Skip to main content
Log in

Time course of appearance ofα-bungarotoxin binding sites during development of chick ciliary ganglion and iris

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The binding of [125I]alpha-bungarotoxin (ABTX) to homogenates of ciliary ganglia and irises from embryonic and posthatching chickens has been examined. Specific, high-affinity binding was found in both tissues [K D (iris)=2.5 nM;K D (ganglion)=2.7 nM]. Binding is saturated above 10 nM toxin concentration and is inhibited by low concentrations of the nicotinic antagonistd-tubocurarine. The binding may be associated with a nicotinic cholinergic receptor in both tissues. The amount of binding in the iris begins to increase soon after functional innervation is first observed, at 12 days of incubation (d.i.), and continues to increase up to four months after hatching (a.h.), the oldest age tested. In contrast, ABTX binding in the ciliary ganglion increases fourfold between 7 and 11 d.i., after which the amount of binding remains unchanged up to four months a.h. When compared to the development of choline acetyltransferase (ChAc) and acetylcholinesterase (AChE) activities in the ganglion and iris, ABTX binding follows a pattern similar to that of AChE activity. The largest increases in ChAc activity occur later than those of the postsynaptic markers. After 16 d.i. there are approximately 3×106 toxin molecules bound per neuron in the ciliary ganglion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berg, D. K., Kelly, R. B., Sargent, P. B., Williamson, P., andHall, Z. W. 1972. Binding ofα-bungarotoxin to acetylcholine receptors in mammalian muscle. Proc. Natl. Acad. Sci. U.S.A. 69: 147–151.

    PubMed  Google Scholar 

  2. Brown, D. A., andFumagalli, L. 1977. Dissociation ofα-bungarotoxin binding and receptor block in the rat superior cervical ganglion. Brain Res. 129: 165–168.

    PubMed  Google Scholar 

  3. Bursztajn, S., andGershon, M. D. 1977. Discrimination between nicotinic receptors in vertebrate ganglia and skeletal muscle byα-bungarotoxin and cobra venom. J. Physiol. 269: 17–27.

    PubMed  Google Scholar 

  4. Chang C. C., andLee, C. Y. 1963. Isolation of neurotoxins from the venom ofBungarus multicinctus and their modes of neuromuscular blocking action. Arch. Int. Pharmacodyn. Ther. 144: 241–257.

    PubMed  Google Scholar 

  5. Chiappinelli, V., andGiacobini, E. 1977. Rate of appearance ofα-bungarotoxin binding sites during development of chick ciliary ganglion and iris. Soc. Neurosci. Abstr. 3: 297.

    Google Scholar 

  6. Chiappinelli, V., Giacobini, E., Pilar, G., andUchimura, H. 1976. Induction of cholinergic enzymes in chick ciliary ganglion and iris muscle cells during synapse formation. J. Physiol. 257: 749–766.

    PubMed  Google Scholar 

  7. Chou, T. C., andLee, C. Y. 1969. Effect of whole and fractionated cobra venom on sympathetic ganglionic transmission. Eur. J. Pharmacol. 8: 326–330.

    PubMed  Google Scholar 

  8. Clarke, P. G. H., andCowan, W. M. 1976. The development of the isthmo-optic tract in the chick, with special reference to the occurrence and correction of developmental errors in the location and connections of isthmo-optic neurons. J. Comp. Neurol. 167: 143–164.

    PubMed  Google Scholar 

  9. Fambrough, D. M. 1976. Development of cholinergic innervation of skeletal, cardiac and smooth muscle. Pages 101–160,in Goldberg, A. M., and Hanin, I., (eds.), Biology of Cholinergic Function, Raven Press, New York.

    Google Scholar 

  10. Fumagalli, L., De Renzis, G., andMiani, N. 1976. Acetylcholine receptors: number and distribution in intact and deafferented superior cervical ganglion of the rat. J. Neurochem. 27: 47–52.

    PubMed  Google Scholar 

  11. Giacobini, E., andChiappinelli, V. 1977. The ciliary ganglion: A model of cholinergic synaptogenesis. Pages 89–116,in Tauc, L., (ed.), Synaptogenesis, Naturalia et Biologia Publ. Paris.

    Google Scholar 

  12. Greene, L. A. 1976. Binding ofα-bungarotoxin to chick sympathetic ganglia: Properties of the receptor and its rate of appearance during development. Brain Res. 111: 135–145.

    PubMed  Google Scholar 

  13. Hamburger, V., andHamilton, H. L. 1951. Aseries of normal stages in the development of the chick embryo. J. Morphol. 88: 49–92.

    Google Scholar 

  14. Hartzell, H. C., andFambrough, D. M. 1973. Acetylcholine receptor production and incorporation into membranes of developing muscle fibers. Dev. Biol. 30: 153–165.

    PubMed  Google Scholar 

  15. Hollyday, M., andHamburger, V. 1976. Reduction of the naturally occurring motor neuron loss by enlargement of the periphery. J. Comp. Neurol. 170: 311–320.

    PubMed  Google Scholar 

  16. Kouvelas, E. D., andGreene, L. A. 1976. The binding and regional ontogeny of receptors forα-bungarotoxin in chick brain. Brain Res. 113: 111–126.

    PubMed  Google Scholar 

  17. Landmesser, L., andPilar, G. 1970. Selective reinnervation of two cell populations in the adult pigeon ciliary ganglion. J. Physiol. 211: 203–216.

    PubMed  Google Scholar 

  18. Landmesser, L., andPilar, G. 1972. The onset and development of transmission in the chick ciliary ganglion. J. Physiol. 222: 691–713.

    PubMed  Google Scholar 

  19. Landmesser, L., andPilar, G. 1974. Synaptic transmission and cell death during normal ganglionic development. J. Physiol. 241: 737–749.

    PubMed  Google Scholar 

  20. Landmesser, L., andPilar, G. 1976. Fate of ganglionic synapses and ganglion cell axons during normal and induced cell death. J. Cell Biol. 68: 357–374.

    PubMed  Google Scholar 

  21. Marwitt, G., Pilar, G., andWeakly, J. N. 1971. Characterization of two ganglion cell populations in avian ciliary ganglia. Brain Res. 25: 317–334.

    PubMed  Google Scholar 

  22. McQuarrie, C., Salvaterra, P.M., De Blas A., Routes, J., andMahler, H. R. 1976. Studies on nicotinic acetylcholine receptors in mammalian brain. J. Biol. Chem. 251: 6335–6339.

    PubMed  Google Scholar 

  23. Moore, W. M., andBrady, R. N. 1976. Studies of nicotinic acetylcholine receptor protein from rat brain. Biochem. Biophys. Acta 444: 252–260.

    PubMed  Google Scholar 

  24. Oppenheimer, R. W., andChu-Wang, I.-Wu. 1977. Spontaneous cell death of spinal motoneurons following peripheral innervation in the chick embryo. Brain Res. 125: 154–160.

    PubMed  Google Scholar 

  25. Pfenninger, K. H., andRees, R. P. 1976. From the growth cone to the synapse: Properties of membranes involved in synapse formation. Pages 131–178,in Barondes, S. H., (ed.), Neuronal Recognition, Plenum Press, New York.

    Google Scholar 

  26. Prestige, M. C. 1976. Evidence that at least some of the motor nerve cells that die during development have first made peripheral connections. J. Comp. Neurol. 170: 123–134.

    PubMed  Google Scholar 

  27. Rees, R. P., Bunge, M. B., andBunge, R. P. 1976. Morphological changes in the neuritic growth cone and target neuron during synaptic junction development in culture. J. Cell Biol. 68: 240–263.

    PubMed  Google Scholar 

  28. Shain, W., Greene, L. A., Carpenter, D., Vogel, Z., andSytkowski, A. 1974Aplysia acetylcholine receptors: Blockade by and binding ofα-bungarotoxin. Brain Res. 72: 225–240.

    PubMed  Google Scholar 

  29. Vogel, Z., andNirenberg, M. 1976. Localization of acetylcholine receptors during synaptogenesis in retina. Proc. Natl. Acad. Sci. U.S.A. 73: 1806–1810.

    PubMed  Google Scholar 

  30. Vogel, Z., Maloney, J., Ling, A., andDaniels, M. P. 1977. Identification of synaptic acetylcholine receptor sites in retina with peroxidase-labelledα-bungarotoxin. Proc. Natl. Acad. Sci. U.S.A. 74: 3268–3272.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Submitted by V. A. Chiappinelli in partial fulfillment of the requirements for the PhD degree in the Department of Biobehavioral Sciences, University of Connecticut, Storrs, Connecticut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiappinelli, V.A., Giacobini, E. Time course of appearance ofα-bungarotoxin binding sites during development of chick ciliary ganglion and iris. Neurochem Res 3, 465–478 (1978). https://doi.org/10.1007/BF00966328

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00966328

Keywords

Navigation