Skip to main content
Log in

Analysis of the tertiary structure of bacterial RNase P RNA

  • Special Issue: RNase MRP/RNase P Systems
  • RNase P
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The ubiquitous occurrence of ribonuclease P (RNase P) as a ribonucleoprotein and the catalytic properties of bacterial RNase P RNAs indicate that RNA fulfills an ancient and important role in the function of this enzyme. This review focuses on efforts to determine the structure of the bacterial RNase P RNA ribozyme. Phylogenetic comparative analysis of a library of bacterial RNase P RNA sequences has resulted in a well-developed secondary structure model and allowed identification of some elements of tertiary structure. The native structure has been redesigned by circular permutation to facilitate intra- and inter-molecular crosslinking experiments in order to gain further structural information. The crosslinking constraints, together with the constraints provided by comparative analyses, have been incorporated into a first-order model of the structure of the ribozyme-substrate complex. The developing structural perspective allows the design of self-cleaving pre-tRNA-RNase P RNA conjugates which are useful tools for additional structure-probing experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

cpRNA:

circularly permuted RNA

References

  1. Cech TR (1993) In: RF Gesteland & JF Atkins (Eds) The RNA World (pp 241–264) Cold Spring Harbor Press

  2. Pace NR & Brown JW (1995) J. Bacteriol. 177: 1919–1928

    Google Scholar 

  3. Kim S-H, Suddath FL, Quigley GL, McPherson A, Sussman JL, Wang AHJ, Seeman NC & Rich A (1974) Science 185: 435–440

    Google Scholar 

  4. Robertus JD, Ladner JE, Finch JR, Rhodes D, Brown RS, Clark BFC & Klug A (1974) Nature 250: 546–551

    Google Scholar 

  5. Pley HM, Flaherty KM & McKay DB (1994) Nature 372: 68–74

    Google Scholar 

  6. Scott WG, Finch JT & Klug A (1995) Cell 81: 991–1002

    Google Scholar 

  7. Heus H & Pardi A (1991) Science 253: 191–194

    Google Scholar 

  8. Wimberly B, Varani G and Tinoco I Jr, (1993) Biochem. 32: 1078–1087

    Google Scholar 

  9. Brimacombe R, Atmadja J, Stiege W & Schuler D (1988) J. Mol. Biol. 199: 115–136

    Google Scholar 

  10. Stern S, Weiser B & Noller HF (1988) J. Mol. Biol. 204: 448–481

    Google Scholar 

  11. Westhof E, Romby P, Romaniuk PJ, Ebel J-P, Ehresmann C & Ehresmann B (1989) J. Molec. Biol. 184: 417–431

    Google Scholar 

  12. Michel F & Westhof E (1990) J. Mol. Biol. 216: 585–610

    Google Scholar 

  13. Malhotra A & Harvey SC (1994) J. Mol. Biol. 240: 308–340

    Google Scholar 

  14. Woese CR & Pace NR (1993) In: RF Gesteland & JF Atkins (Eds) The RNA World (pp 91–117) Cold Spring Harbor Press

  15. James BD, Olsen GJ, Liu JS & Pace NR (1988) Cell 52: 19–26

    Google Scholar 

  16. Haas ES, Brown JW, Pitulle C & Pace NR (1994) Proc. Natl. Acad. Sci. USA 91: 2527–2531

    Google Scholar 

  17. Brown JW, Nolan JM, Haas ES, Rubio MAT, Major F & Pace NR (1996) Proc. Natl. Acad. Sci. USA 93: 3001–3006

    Google Scholar 

  18. Burke JM, Belfort M, Cech TR, Davies RW, Schweyen RJ, Shub DA, Szostak JW & Tabak HF (1987) Nucl. Acids Res. 15: 7217–7221

    Google Scholar 

  19. Darr SC, Zito K, Smith D & Pace NR (1990) Biochemistry 31: 328–333

    Google Scholar 

  20. LaGrandeur TE, Darr SC, Haas ES & Pace NR (1993) J. Bacteriol. 175: 5043–5048

    Google Scholar 

  21. Tranguch AJ & Engelke DR (1993) J. Biol. Chem. 268: 14045–14055

    Google Scholar 

  22. Shiraishi H, & Shimura Y (1986). EMBO J. 7: 3673–3679

    Google Scholar 

  23. Baer MF, Reilly RM, McCorckle GM, Hai T-Y, Altman S, & RajBhandary L (1988) J. Biol. Chem. 263: 2344–2351

    Google Scholar 

  24. Kirsebom LA, & Svärd SG (1993) J. Mol. Biol. 231: 594–604

    Google Scholar 

  25. Schlegl J, Hardt W-D, Erdmann VA, Hartman R (1994) EMBO J. 13: 4863–4869

    Google Scholar 

  26. Waugh DS & Pace NR (1992) FASEB J. 7: 188–195

    Google Scholar 

  27. Costa M & Michel F (1995) EMBO J. 14, 1276–1285

    Google Scholar 

  28. Tanner MA & Cech TR (1995) RNA 1: 349–350

    Google Scholar 

  29. Moore MJ & Sharp PA (1992) Science 256: 992–997

    Google Scholar 

  30. Waugh DS (1989) Ph.D. Thesis, Indiana University

  31. Pan T, Gutell R and Uhlenbeck O (1991) Science 254: 1361–1364

    Google Scholar 

  32. Nolan JM, Burke DH & Pace NR (1993) Science 261: 762–765

    Google Scholar 

  33. Burgin AB & Pace NR (1990) EMBO J. 9: 4111–4118

    Google Scholar 

  34. Harris ME, Nolan JM, Malhotra A, Brown JW, Harvey SC & Pace NR (1994) EMBO J. 13: 3953–3963

    Google Scholar 

  35. Oh B-K & Pace NR (1994) Nucl. Acids Res. 22: 4087–4094

    Google Scholar 

  36. Altman S & Westhof E (1994) Proc. Natl. Acad. Sci. USA 91: 5133–5137

    Google Scholar 

  37. LaGrandeur TE, Hüttenhofer A, Noller HF & Pace NR (1994) EMBO J. 13: 3945–3952

    Google Scholar 

  38. Kirsebom LA & Svard SG (1994) EMBO J. 13: 4870–4876

    Google Scholar 

  39. Reich C, Gardiner KJ, Olsen GJ, Pace B, Marsh TL & Pace NR (1986) J. Biol. Chem. 261: 7888–7893

    Google Scholar 

  40. Tallsjö A & Kirsebom LA (1993) Nucl. Acids Res. 21: 51–57

    Google Scholar 

  41. Szostak JM & Ellington A (1993) In: RF Gesteland & JF Atkins (Eds) The RNA World (pp 511–533) Cold Spring Harbor Press

  42. Frank DN, Harris ME & Pace NR (1994) Biochemistry 33: 10800–10808

    Google Scholar 

  43. Kikuchi Y, Sasaki-Tozawa N & Suzuki K (1993) Nucl. Acids Res. 20: 4685–4689

    Google Scholar 

  44. Siebenlist U & Gilbert W (1980). Proc. Natl. Acad. Sci. USA 77: 122–126

    Google Scholar 

  45. Conway L & Wickens M (1987) EMBO J. 6: 4177–4184

    Google Scholar 

  46. Guar RK & Krupp G (1993) Nucl. Acids Res. 21: 21–26

    Google Scholar 

  47. Hardt W-D, Warnecke JM, Erdmann VA & Hartmann RK (1995) EMBO J. 14: 2935–2944

    Google Scholar 

  48. Eckstein F (1985) Ann. Rev. Biochem. 54: 367–402

    Google Scholar 

  49. Harris ME & Pace NR (1995) RNA 1: 210–218

    Google Scholar 

  50. Smith D. (1995) In: J.A. Cowan (Ed) The Biological Chemistry of Magnesium (pp 111–135) VCH Publishers, Inc.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, M.E., Pace, N.R. Analysis of the tertiary structure of bacterial RNase P RNA. Mol Biol Rep 22, 115–123 (1995). https://doi.org/10.1007/BF00988715

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00988715

Key words

Navigation