Skip to main content
Log in

The nearest-neighbor resonating-valence bond state in a Grassmannian form

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The nearest-neighbor resonating-valence bond (NNRVB) state is studied using classical anticommuting (Grassmann) variables. The classical partition function corresponding to the self-overlap of the NNRVB wavefunction is generated from a local (bond) Hamiltonian expressed in terms of four anticommuting variables. It is shown that the one-particle-per-site constraint introduces an interaction term which is a local product of all four variables. Two approaches are applied to study this Hamiltonian: (i) a self-consistent field decoupling scheme and (ii) a systematic perturbation expansion around the unconstrained soluble point. Bounds on the norm of the wavefunction are derived. Extensions to the presence of holes, long-range valence bonds, and the introduction of phase fluctuations [which violate the Marshall sign rule and yield aU(1) gauge theory] are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. W. Anderson, The resonating valence bond state in La2CuO4 and superconductivity,Science 235:1196 (1987).

    Google Scholar 

  2. G. Baskaran, Z. Zou, and P. W. Anderson, The resonating valence bond state and highT c superconductivity—A mean field theory,Solid State Commun. 63:973 (1987).

    Google Scholar 

  3. I. Affleck and J. B. Martson, Large-n limit of the Heisenberg-Hubbard model: Implications for high-T c superconductors,Phys. Rev. B 37:3774 (1988).

    Google Scholar 

  4. G. Kotliar, Resonating valence bond andd-wave superconductivity,Phys. Rev. B 37:3664 (1988).

    Google Scholar 

  5. S. Kivelson, D. Rokhsar, and J. Sethna, Topology of the resonating valence-bond state: Solitons and high-T c superconductivity,Phys. Rev. B 35:8865 (1987).

    Google Scholar 

  6. X. G. Wen, F. Wilczek, and A. Zee, Chiral spin states and superconductivity,Phys. Rev. B 39:11413 (1989).

    Google Scholar 

  7. T. Holstein and H. Primakoff, Field dependence of the intrinsic domain magnetization of a ferromagnet,Phys. Rev. 58:1098 (1940).

    Google Scholar 

  8. P. W. Anderson, An approximate quantum theory of the antiferromagnetic ground state,Phys. Rev. 86:694 (1952).

    Google Scholar 

  9. C. Kittel,Quantum Theory of Solids (Wiley, New York, 1963).

    Google Scholar 

  10. F. D. M. Haldane, Continuum dynamics of the 1-D Heisenberg antiferromagnet: identification with theO(3) nonlinear sigma model,Phys. Lett. 93A:464 (1983).

    Google Scholar 

  11. P. W. Anderson,Mater. Res. Bull. 8:153 (1973)

    Google Scholar 

  12. P. Fazekas and P. W. Anderson, On the ground state properties of the anisotropic triangular antiferromagnet,Philos. Mag. 30:423 (1974).

    Google Scholar 

  13. H. Bethe,Z. Phys. 71:205 (1931).

    Google Scholar 

  14. L. Hulthèn,Ark. Mat. Astr. Fys. 26A:1 (1938).

    Google Scholar 

  15. A. Liang, B. Douçot, and P. W. Anderson, Some new variational resonating-valence-bond-type wave functions for the spin-1/2 antiferromagnetic Heisenberg model on a square lattice,Phys. Rev. Lett. 61:365 (1988).

    Google Scholar 

  16. Y. Shapir, The Neel-RVB transition upon doping with static holes, ITP preprint (1989).

  17. H. Tasaki, Order and disorder in the resonating-valence-bond state, preprint.

  18. B. Sutherland, Systems with resonating valence bond ground states: Correlations and excitations,Phys. Rev. B 37:3786 (1988).

    Google Scholar 

  19. M. Kohmoto and Y. Shapir, Antiferromagnetic correlations of the resonating valence bond state,Phys. Rev. B 37:9439 (1988).

    Google Scholar 

  20. Y. Shapir and M. Kohmoto, Exact mapping of the resonating valence bond state to a classicalO(4) model in a logarithmic potential: Mean field theory, magnetic correlations and excitations,Phys. Rev. B 39:4524 (1989).

    Google Scholar 

  21. W. Marshall, Antiferromagnetism,Proc. R. Soc. Lond. A 232:48 (1955).

    Google Scholar 

  22. B. Sutherland, Monte Carlo investigation of the resonating-valence-bond ground state and a lattice statistical model,Phys. Rev. B 38:6855 (1988).

    Google Scholar 

  23. B. Sutherland, The phase diagram of a lattice statistics problem associated with the resonating valence bond ground state, preprint.

  24. N. Read and S. Suchdev, Valence-bond and spin-Peierls states of low-dimensional quantum antiferromagnets,Phys. Rev. Lett. 62:1694 (1989).

    Google Scholar 

  25. D. Rokhsar and S. Kivelson, Superconductivity and the quantum hard core dimer gas,Phys. Rev. Lett. 61:2376 (1988).

    Google Scholar 

  26. E. Lieb, T. Schultz, and D. Mattis, Two soluble models of an antiferromagnetic chain,Ann. Phys. (N. Y.)16:407.

  27. P. Jordan and E. Wigner, Über das Paulische Aquivalenzverbot,Z. Phys. 47:631 (1928).

    Google Scholar 

  28. E. Fradkin, Jordan-Wigner transformation for quantum spin systems in two dimensions and fractional statistics,Phys. Rev. Lett. 63:322 (1989).

    Google Scholar 

  29. Y. Shapir and T. Blum, Grassmannian approach to the RVB state of the 2D Heisenberg antiferromagnet,Mod. Phys. Lett. 3:925 (1989).

    Google Scholar 

  30. Y. Shapir, Supersymmetric statistical models on the lattice, inPhysica D 15:129 (1985).

    Google Scholar 

  31. S. Samuel, The use of anticommuting variable integrals in statistical mechanics. I. The computation of partition functions,J. Math. Phys. 21:2806 (1980).

    Google Scholar 

  32. S. Samuel, The use of anticommuting variable integrals in statistical mechanics. III. Unsolved models,J. Math. Phys. 21:2820 (1980).

    Google Scholar 

  33. P. W. Kasteleyn, The statistics of dimers on a lattice,Physica 27:1209 (1961).

    Google Scholar 

  34. Y. Fan and M. Ma, Generating-function approach to the resonating-bond state on the triangular and square ladders,Phys. Rev. B 37:1820 (1988).

    Google Scholar 

  35. G. Baskaran and P. W. Anderson, Gauge Theory of high-temperature superconductors and strongly correlated Fermi systems,Phys. Rev. B 37:580 (1988).

    Google Scholar 

  36. N. Read and C. Chakraborty, Statistics of the excitations of the resonating valence bond state,Phys. Rev. B 40:7133 (1989).

    Google Scholar 

  37. V. Kalmeyer and R. B. Laughlin, Equivalence of the resonating valence bond and fractional quantum Hall states,Phys. Rev. Lett. 59:2095 (1987).

    Google Scholar 

  38. R. B. Laughlin, The relationship between high-temperature superconductivity and the fractional Quantum hall effect,Science 242:525 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blum, T., Shapir, Y. The nearest-neighbor resonating-valence bond state in a Grassmannian form. J Stat Phys 59, 333–355 (1990). https://doi.org/10.1007/BF01015573

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01015573

Key words

Navigation