Skip to main content
Log in

Structure and properties of nonclassical polymers X. Heteroatomic polymers with degenerate half-filled band

  • Published:
Molecular Engineering

Abstract

It is shown that the group of π-conjugated, nonclassical (non-Kekulé) homonuclear, alternative organic polyradicals and polymers with degenerate NBMOs can be essentially extended to a large class of heterocyclic analogues having a set of degenerate MOs. The presence of a set of degenerate MOs (DMOs) results from the molecular topology of the system. The conditions of occurrence of DMOs are determined by the generalized Coulson-Rushbrooke-Longuet-Higgins theorem. The character of spin-exchange interaction of π-electrons in the half-filled band (HFB) of a large group of model polymers, analogues of poly(meta-anilines), has been investigated. It is shown that the main component of the ferromagnetic exchange interaction is the potential (Coulomb) exchange and a smaller contribution of the indirect exchange among the HFB electrons via the delocalized π-electrons in the occupied bands. The theoretical method used, which predicts the existence of a set of DMOs, may serve as a guiding principle in the design of narrow-band, high-spin organic polymers in which cooperative magnetic phenomena can arise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Hund:Z. Phys. 51, 759 (1928).

    Google Scholar 

  2. H. C. Longuet-Higgins:Chem. Phys. 18, 265 (1950).

    Google Scholar 

  3. C. A. Coulson and G. S. Rushbrooke:Proc. Cambridge Phil. Soc. 36, 139 (1940).

    Google Scholar 

  4. C. A. Coulson and H. C. Longuet-Higgins:Proc. Roy. Soc. A191, 9;A192, 16;A193, 447 (1947).

    Google Scholar 

  5. K. Itoh:Chem. Phys. Lett. 1, 235 (1967).

    Google Scholar 

  6. E. Wasserman, R. W. Murray, W. A. Trozzolo, and G. Smolinsky:J. Am. Chem. Soc. 89, 5076 (1967).

    Google Scholar 

  7. N. Mataga:Theoret. Chim. Acta. 10, 372 (1968).

    Google Scholar 

  8. N. Tyutyulkov and I. Bangov:Compt. Rend. Acad. Bulg. Sci. 27, 1517 (1974).

    Google Scholar 

  9. A. A. Ovchinnikov:Theoret. Chim. Acta 47, 297 (1978).

    Google Scholar 

  10. D. J. Klein, C. J. Nelin, S. Alexander, and F. A. Matsen:J. Chem. Phys. 77, 3101 (1982).

    Google Scholar 

  11. N. Tyutyulkov, P. Schuster, and O. E. Polansky:Theoret. Chim. Acta 63, 291 (1983).

    Google Scholar 

  12. J. Koutecky, D. Döhnert, P. S. Wörmer, J. Paldus, and J. Cizek:J. Chem. Phys. 80, 2244 (1984).

    Google Scholar 

  13. N. Tyutyulkov, O. E. Polansky, P. Schuster, S. Karabunarliev, and C. I. Ivanov:Theoret. Chim. Acta 63, 291 (1985).

    Google Scholar 

  14. D. Maynau, Ph. Durand, J. P. Daudey, and J. P. Malrieu:Phys. Rev. A28, 3193 (1983).

    Google Scholar 

  15. H. Iwamura:Adv. Phys. Org. Chem. 26, 179 (1990).

    Google Scholar 

  16. I. Laszlo:Int. J. Quantum Chem. 50, 378 (1993).

    Google Scholar 

  17. R. Gouarne:Compt. Rend. 234, 103 (1952).

    Google Scholar 

  18. N. Tyutyulkov and O. E. Polansky:Chem. Phys. Lett. 139, 281 (1987).

    Google Scholar 

  19. S. Karabunarliev and N. Tyutyulkov:Theoret. Chim. Acta 76, 65 (1989).

    Google Scholar 

  20. K. Yoshizawa, K. Tanaka, T. Yamabe, and J. Yamauchi:J. Chem. Phys. 96, 5516 (1992).

    Google Scholar 

  21. M. Baumgarten, K. Müllen, N. Tyutyulkov, and G. Madjarova:Chem. Phys. 69, 81 (1993).

    Google Scholar 

  22. O. E. Polansky and N. Tyutyulkov:Match (Commun. Math. Chem.) 3, 149 (1977).

    Google Scholar 

  23. C. Ivanov, N. Tyutyulkov, and S. Karabunarliev:J. Magn. Mat. 92, 172 (1990).

    Google Scholar 

  24. N. Tyutyulkov and S. Karabunarliev:Chem. Phys. 112, 293 (1987).

    Google Scholar 

  25. J. Hubbard:Proc. Roy. Soc. A276, 238 (1963).

    Google Scholar 

  26. N. Mataga and K. Nishimoto:Z. Physikal. Chem. 13, 170 (1957).

    Google Scholar 

  27. K. Ohno:Theoret. Chim. Acta 2, 219 (1964).

    Google Scholar 

  28. SPARTAN, Version 3.0, Wavefunction, Inc., Irvine, CA, USA.

  29. A. Streitwieser, Jr.:MO Theory, J. Wiley, New York (1965).

    Google Scholar 

  30. R. Pariser and G. Parr:J. Chem. Phys. 21, 466 (1953).

    Google Scholar 

  31. I. Kanev and N. Tyutyulkov:Optics and Spectroscopy (Optika i Spektroskopia, USSR)43, 222 (1977).

    Google Scholar 

  32. J. Michl, J. Koutecky, R. Becker, and Ch. E. Earhart:Theoret. Chim. Acta 19, 92 (1970).

    Google Scholar 

  33. PPP program of the Sofia quantum chemistry group.

  34. J. E. Harriman:Theoretical Foundations of Electron Spin Resonance, Academic Press, New York (1978).

    Google Scholar 

  35. P.-O. Löwdin:Phys. Rev. 97, 1509 (1955); R. Pauncz:AMO Method, Saunders, Philadelphia (1967).

    Google Scholar 

  36. N. Tyutyulkov, P. Schuster, and O. Polansky:Theoret. Chim. Acta 63, 291 (1983).

    Google Scholar 

  37. N. Tyutyulkov and F. Dietz:Chem. Phys. 171, 293 (1993).

    Google Scholar 

  38. K. Yoshizawa, K. Tanaka, and T. Yamabe:J. Phys. Chem. 98, 1851 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Part IX:Theoret. Chim. Acta 86, 353–367 (1993).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müllen, K., Baumgarten, M., Tyutyulkov, N. et al. Structure and properties of nonclassical polymers X. Heteroatomic polymers with degenerate half-filled band. Mol Eng 4, 353–367 (1995). https://doi.org/10.1007/BF01019468

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01019468

Key words

Navigation