Skip to main content
Log in

Statistical properties of two-dimensional periodic Lorentz gas with infinite horizon

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the asymptotic statistical behavior of the 2-dimensional periodic Lorentz gas with an infinite horizon. We consider a particle moving freely in the plane with elastic reflections from a periodic set of fixed convex scatterers. We assume that the initial position of the particle in the phase space is random with uniform distribution with respect to the Liouville measure of the periodic problem. We are interested in the asymptotic statistical behavior of the particle displacement in the plane as the timet goes to infinity. We assume that the particle horizon is infinite, which means that the length of free motion of the particle is unbounded. Then we show that under some natural assumptions on the free motion vector autocorrelation function, the limit distribution of the particle displacement in the plane is Gaussian, but the normalization factor is (t logt)1/2 and nott 1/2 as in the classical case. We find the covariance matrix of the limit distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. A. Lorentz, The motion of electrons in metallic bodies,Proc. Amst. Acad. 7:438, 585, 604 (1905).

    Google Scholar 

  2. G. Gallavotti, Divergences and the approach to equilibrium in the Lorentz and the wind-tree models,Phys. Rev. 185:308–314 (1969).

    Google Scholar 

  3. E. H. Hauge, What one can learn from Lorentz models, inLecture Notes in Physics, Vol. 31 (1974), pp. 337–367.

    Google Scholar 

  4. Sh. Goldstein, J. Lebowitz, and M. Aizenman, Ergodic properties of infinite systems, inLecture Notes in Physics 38:112–143 (1975).

    Google Scholar 

  5. G. Gallavotti, Lectures on the billiard, inLecture Notes in Physics, Vol. 38 (1975), pp. 236–295.

    Google Scholar 

  6. Ya. G. Sinai, Ergodic properties of the Lorentz gas,Funkts. Anal. Ego Prilozh. 13:46–59 (1979).

    Google Scholar 

  7. L. A. Bunimovich and Ya. G. Sinai, Markov partitions for dispersed billiards,Commun. Math. Phys. 78:247–280 (1980).

    Google Scholar 

  8. L. A. Bunimovich and Ya. G. Sinai, Statistical properties of Lorentz gas with periodic configuration of scatterers,Commun. Math. Phys. 78:479–497 (1981).

    Google Scholar 

  9. L. A. Bunimovich, Decay of correlations in dynamical systems with chaotic behavior,Zh. Eksp. Teor. Fiz. 89:1452–1471 (1985) [Sov. Phys. JETP 62:842–852 (1985).

    Google Scholar 

  10. A. Krámli and D. Szász, Central limit theorem for the Lorentz process via perturbation theory,Commun. Math. Phys. 91:519–528 (1983).

    Google Scholar 

  11. G. Casati, G. Comparin, and I. Guarneri, Decay of correlations in certain hyperbolic systems,Phys. Rev. A 26:717–719 (1982).

    Google Scholar 

  12. J. Machta, Power law decay of correlations in a billiard problem,J. Stat. Phys. 32:555–564 (1983).

    Google Scholar 

  13. J. Machta and R. Zwanzig, Diffusion in a periodic Lorentz gas,Phys. Rev. Lett. 50:1959–1962 (1983).

    Google Scholar 

  14. B. Friedman, Y. Oono, and I. Kubo, Universal behavior of Sinai billiard systems in the small-scatterer limit,Phys. Rev. Lett. 52:709–712 (1984).

    Google Scholar 

  15. B. Friedman and R. F. Martin, Jr., Decay of the velocity autocorrelation function for the periodic Lorentz gas,Phys. Lett. 105A:23–26 (1984).

    Google Scholar 

  16. J.-P. Bouchaud and P. Le Doussal, Numerical study of a D-dimensional periodic Lorentz gas with universal properties,J. Stat. Phys. 41:225–248 (1985).

    Google Scholar 

  17. P. R. Baldwin, Soft billiard systems,Physica D 29:321–342 (1988).

    Google Scholar 

  18. B. Friedman and R. F. Martin, Jr., Behavior of the velocity autocorrelation function for the periodic Lorentz gas,Physica D 30:219–227 (1988).

    Google Scholar 

  19. P. M. Bleher, Statistical properties of a particle moving in a periodic scattering billiard, inStochastic Methods in Experimental Sciences (Proc. 1989 COSMEX Meeting, Sklarska Poreba, Poland 8–14 Sept. 1989), W. Kasprzak and A. Weron, eds. (World Scientific, Singapore, 1990), pp. 43–58.

    Google Scholar 

  20. Ya. G. Sinai, Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards,Usp. Math. Nauk 25:141–192 (1970).

    Google Scholar 

  21. I. Kubo, Billiard problem,Sem. Prob. 37 (1972).

  22. G. Gallavotti and D. Ornstein, Billiards and Bernoulli schemes,Commun. Math. Phys. 38:83–101 (1974).

    Google Scholar 

  23. L. A. Bunimovich and Ya. G. Sinai, On a fundamental theorem in the theory of dispersing billiards,Math. USSR-Sb. 90:407–423 (1973).

    Google Scholar 

  24. L. A. Bunimovich, Ya. G. Sinai, and N. I., Tchernov, Markov partitions for two-dimensional hyperbolic billiards,Uspekhi Math. Nauk 45:97–134 (1990).

    Google Scholar 

  25. W. Feller,An Introduction to Probability Theory and Its Applications, Vol. II, 2nd ed. (Wiley, New York, 1971).

    Google Scholar 

  26. P. Billingsley,Convergence of Probability Measures (Wiley, New York, 1968).

    Google Scholar 

  27. K. M. Efimov, The central limit theorem for the Lorentz gas and martingales,Stochastics 14:1–10 (1984).

    Google Scholar 

  28. A. Zacherl, T. Geisel, J. Nierwetberg, and G. Radons, Power spectra for anomalous diffusion in the extended billiard,Phys. Lett. 114A:317–321 (1986).

    Google Scholar 

  29. L. A. Bunimovich, Ph.d. Dissertation, Moscow (1985).

  30. G. Keller, Diplomarbeit. Universitaet Erlangen (1977).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bleher, P.M. Statistical properties of two-dimensional periodic Lorentz gas with infinite horizon. J Stat Phys 66, 315–373 (1992). https://doi.org/10.1007/BF01060071

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01060071

Key words

Navigation