Skip to main content
Log in

Analysis of nonlinear tissue distribution of quinidine in rats by physiologically based pharmacokinetics

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

The nonlinear tissue distribution of quinidine in rats was investigated by a physiologically based pharmacokinetic model. Serum protein binding of quinidine showed a nonlinearity over thein vivo plasma concentration range. The blood-to-plasma concentration ratio (C b/C p) of quinidine also showed a concentration dependence. The steady-state volume of distribution (V ss) determined over the plasma concentration range from 0.5 to 10 μg/ml was 6.0 ±0.45 L/kg. The tissue-to-plasma partition coefficient (Kp) of muscle, skin, liver, lung, and gastrointestinal tract (GI) showed a nonlinearity over thein vivo plasma concentration range of quinidine, suggesting saturable tissue binding. The concentration of quinidine in several tissues and plasma was predicted by a physiologically based pharmacokinetic model usingin vitro plasma protein binding and theC b/C p of quinidine. The tissue binding parameters were estimated fromin vivo Kp values. The predicted concentration curves of quinidine in each tissue and in plasma showed good agreement with the observed values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. R. Ochs, D. J. Greenblatt, and E. Woo. Clinical pharmacokinetics of quinidine.Clin. Pharmacokin. 5:150–168 (1980).

    Article  CAS  Google Scholar 

  2. G. Bianchetti, J. L. Elghozi, R. Gomeni, P. Meyer, and P. L. Morselli. Kinetics of distribution of dl-propranolol in various organs and discrete brain areas of the rat.J. Pharmacol. Exp. Ther. 214:682–687 (1980).

    CAS  PubMed  Google Scholar 

  3. M. H. Bickel, R. Stegmann, and C. di Francesco. On the roles of uptake, binding, and metabolism in the liver cells of drugs displaying first-pass effects. InLiver, Proceedings International Gstaad Symposium 2nd, 1975, pp. 130–134.

  4. M. Mintun, K. J. Himmelstein, R. L. Schroder, M. Gibaldi, and D. D. Shen. Tissue distribution kinetics of tetraethylammonium ion in the rat.J. Pharmacokin. Biopharm. 8:373–409 (1980).

    Article  CAS  Google Scholar 

  5. H. Iven. The pharmacokinetics and organ distribution of ajmaline and quinidine in the mouse.Naunyn-Schmiderberg's Arch. Pharmacol. 298:43–50 (1977).

    Article  CAS  Google Scholar 

  6. D. Fremstad, S. Jacobsen, and P. K. M. Lunde. Influence of serum protein binding on the pharmacokinetics of quinidine in normal and anuric rats.Acta Pharmacol. Toxicol. 41:161–176 (1977).

    Article  CAS  Google Scholar 

  7. T. W. Guentert and S. Øie. Effect of plasma protein binding on quinidine kinetics in the rabbit.J. Pharmacol. Exp. Ther. 215:165–171 (1980).

    CAS  PubMed  Google Scholar 

  8. T. W. Guentert, J. D. Huang, and S. Øie. Disposition of quinidine in the rabbit.J. Pharm. Sci. 71:812–815 (1982).

    Article  CAS  PubMed  Google Scholar 

  9. C. T. Ueda, B. Ballard, and M. Rowland. Concentration-time effects on quinidine disposition kinetics in rhesus monkeys.J. Pharmacol. Exp. Ther. 200:459–468 (1977).

    CAS  PubMed  Google Scholar 

  10. D. J. Greenblatt, H. J. Pfeifer, H. R. Ochs, K. Franke, D. S. MacLaughlin, T. W. Smith, and J. Koch-Weser. Pharmacokinetics of quinidine in humans after intravenous, intramuscular and oral administration.J. Pharmacol. Exp. Ther. 202:365–378 (1977).

    CAS  PubMed  Google Scholar 

  11. H. R. Ochs, D. J. Greenblatt, E. Woo, K. Franke, and T. W. Smith. Effect of propranolol on pharmacokinetics and acute electrocardiographic changes following intravenous quinidine in humans.Pharmacology 17:301–306 (1978).

    Article  CAS  PubMed  Google Scholar 

  12. D. Fremstad, O. G. Nilsen, L. Storstein, J. Amlie, and S. Jacobsen. Pharmacokinetics of quinidine related to plasma protein binding in man.Eur. J. Clin. Pharmacol. 15:187–192 (1979).

    Article  CAS  PubMed  Google Scholar 

  13. H. R. Ochs, E. Grube, D. J. Greenblatt, E. Woo, and G. Bodem. Intravenous quinidine: Pharmacokinetic properties and effects on left ventricular performance in humans.Am. Heart J. 99:468–475 (1980).

    Article  CAS  PubMed  Google Scholar 

  14. N. H. G. Holford, P. E. Coates, T. W. Guentert, S. Riegelman, and L. B. Sheiner. The effect of quinidine and its metabolites on the electrocardiogram and systolic time intervals: Concentration-effect relationships.Br. J. Clin. Pharmacol. 11:187–195 (1981).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. R. L. Dedrick and K. B. Bischoff. Pharmacokinetics in application of the artificial kidney.Chem. Eng. Prog. Symp. Ser. 64:32–44 (1968).

    CAS  Google Scholar 

  16. K. J. Himmelstein and R. J. Lutz. A review of the applications of physiologically based pharmacokinetic modeling.J. Pharmacokin. Biopharm. 7:127–145 (1979).

    Article  CAS  Google Scholar 

  17. H. S. G. Chen and J. F. Gross. Physiologically based pharmacokinetic models for anticancer drugs (general review).Cancer Chemother. Pharmacol. 2:85–94 (1979).

    Article  CAS  PubMed  Google Scholar 

  18. N. Benowitz, R. P. Forsyth, K. L. Melmon, and M. Rowland. Lidocaine disposition kinetics in monkey and man I. Prediction by a perfusion model.Clin. Pharm. Ther. 16:87–98 (1974).

    CAS  Google Scholar 

  19. N. Benowitz, R. P. Forsyth, K. L. Melmon, and M. Rowland. Lidocaine disposition kinetics in monkey and man II. Effects of hemorrhage and sympathomimetic drug administration.Clin. Pharmacol. Ther. 16:99–109 (1974).

    CAS  PubMed  Google Scholar 

  20. L. I. Harrison and M. Gibaldi. Physiologically based pharmacokinetic model for digoxin disposition in dogs and its preliminary application to humans.J. Pharm. Sci. 66:1679–1683 (1977).

    Article  CAS  PubMed  Google Scholar 

  21. Library Program (D2/TC/RKM) of the University of Tokyo Computer Center, Tokyo, Japan, 1980.

  22. R. L. Dedrick. Animal scale-up.J. Pharmacokin. Biopharm. 1:435–461 (1973).

    Article  CAS  Google Scholar 

  23. K. B. Bischoff, R. L. Dedrick, D. S. Zaharko, and J. A. Longstreth. Methotrexate pharmacokinetics.J. Pharm. Sci. 60:1128–1133 (1971).

    Article  CAS  PubMed  Google Scholar 

  24. Y. Sasaki and H. N. Wagner. Measurement of the distribution of cardiac output in unanesthetized rats.J. Appl. Physiol. 30:879–884 (1971).

    CAS  PubMed  Google Scholar 

  25. R. L. Dedrick, D. S. Zaharko, and R. J. Lutz. Transport and binding of methotrexatein vivo.J. Pharm. Sci. 62:882–890 (1973).

    Article  CAS  PubMed  Google Scholar 

  26. R. J. Lutz, R. L. Dedrick, H. B. Matthews, T. E. Eling, and M. W. Anderson. A preliminary pharmacokinetic model for several chlorinated biphenyls in the rat.Drug Metab. Dispos. 5:386–396 (1977).

    CAS  PubMed  Google Scholar 

  27. T. Nakagawa, Y. Koyanagi, and H. Togawa. SALS, A Computer Program for Statistical Analysis with Least Squares Fitting, Library Program of the University of Tokyo Computer Center, Tokyo, Japan, 1978.

  28. O. G. Nilsen, L. Storstein, and S. Jacobsen. Effect of heparin and fatty acids on the binding of quinidine and warfarin in plasma.Biochem. Pharmacol. 26:229–235 (1977).

    Article  CAS  PubMed  Google Scholar 

  29. H. S. G. Chen and J. F. Gross. Estimation of tissue-to-plasma partition coefficients used in physiological pharmacokinetic models.J. Pharmacokin. Biopharm. 7:117–125 (1979).

    Article  CAS  Google Scholar 

  30. Y. Igari, Y. Sugiyama, S. Awazu, and M. Hanano. Comparative physiologically based pharmacokinetics of hexobarbital, phenobarbital, and thiopental in the rat.J. Pharmacokin. Biopharm. 10:53–75 (1982).

    Article  CAS  Google Scholar 

  31. O. Sugita, Y. Sawada, Y. Sugiyama, T. Iga, and M. Hanano. Prediction of drug-drug interaction fromin vitro plasma protein binding and metabolism. A study of tolbutamidesulfonamides interactions in rats.Biochem. Pharmacol. 30:3347–3354 (1981).

    Article  CAS  PubMed  Google Scholar 

  32. O. Sugita, Y. Sawada, Y. Sugiyama, T. Iga, and M. Hanano. Physiologically based pharmacokinetics of drug-drug interaction: A study of tolbutamide-sulfonamide interaction in rats.J. Pharmacokin. Biopharm. 10:297–316 (1982).

    Article  CAS  Google Scholar 

  33. J. H. Lin, Y. Sugiyama, S. Awazu, and M. Hanano. Physiological pharmacokinetics of ethoxybenzamide based on biochemical data obtainedin vitro as well as on physiological data.J. Pharmacokin. Biopharm. 10:649–661 (1982).

    Article  CAS  Google Scholar 

  34. J. H. Lin, Y. Sugiyama, S. Awazu, and M. Hanano. Effect of product inhibition on elimination kinetics of ethoxybenzamide in rabbits: Analysis by physiological pharmacokinetic model.Drug Metab. Dispos. 12:253–256 (1984).

    CAS  PubMed  Google Scholar 

  35. Y. Igari, Y. Sugiyama, Y. Sawada, T. Iga, and M. Hanano. Prediction of diazepam disposition in the rat and man by a physiologically based pharmacokinetic model.J. Pharmacokin. Biopharm. 11:577–593 (1983).

    Article  CAS  Google Scholar 

  36. I. E. Hughes and K. F. Ilett. The distribution of quinidine in human blood.Br. J. Clin. Pharmacol. 2:521–525 (1975).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. R. L. Dedrick, D. S. Zaharko, and R. J. Lutz. Transport and binding of methotrexatein vivo.J. Pharm. Sci. 62:882–890 (1973).

    Article  CAS  PubMed  Google Scholar 

  38. H. Harashima, Y. Sugiyama, Y. Sawada, T. Iga, and M. Hanano. Comparison betweenin-vivo andin-vitro tissue-to-plasma unbound concentration ratios (K p,f) of quinidine in rats.J. Pharm. Pharmacol. 36:340–342 (1984).

    Article  CAS  PubMed  Google Scholar 

  39. T. Yoshikawa, Y. Sugiyama, Y. Sawada, T. Iga, and M. Hanano. Effect of pregnancy on tissue distribution of salicylate in rats.Drug Metab. Dispos. 12:500–505 (1984).

    CAS  PubMed  Google Scholar 

  40. B. Fichtl, B. Bondy, and H. Kurz. Binding of drugs to muscle tissue: Dependence on drug concentration and lipid content of tissue.J. Pharmacol. Exp. Ther. 215:248–253 (1980).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This study was supported by a grant-in-aid for Scientific Research provided by the Ministry of Education, Science and Culture of Japan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harashima, H., Sawada, Y., Sugiyama, Y. et al. Analysis of nonlinear tissue distribution of quinidine in rats by physiologically based pharmacokinetics. Journal of Pharmacokinetics and Biopharmaceutics 13, 425–440 (1985). https://doi.org/10.1007/BF01061478

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01061478

Key words

Navigation