Skip to main content
Log in

Prediction of the disposition ofβ-lactam antibiotics in humans from pharmacokinetic parameters in animals

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

Various pharmacokinetic parameters (disposition half-life, total body clearance, renal clearance, hepatic clearance, volume of distribution, intrinsic clearance and volume of distribution of unbound drug) of sixβ-lactam antibiotics were compared in mouse, rat, rabbit, dog, monkey, and human. Two methods for prediction of the disposition of theβ-lactam antibiotics in humans by extrapolation of the animal data were evaluated. One was the Adolph-Dedrick approach, which can be used to predict clearances in humans from the relationship between intrinsic clearances and body weight in the other five species. The volume of distribution in humans was predicted from the relationship between the volume of distribution and serum unbound fraction in the five species. The other was the Boxenbaum approach, which can be used to predict the pharmacokinetic parameters of the sixβ-lactam antibiotics in humans by using the regression lines of log-log plots of intrinsic clearance and volume of distribution of unbound drug in a single species, in this case the monkey. The half-life calculated according to the latter method had a smaller absolute error than that calculated according to the former method, but the better method for extrapolation of animal data to humans seems to be the former method, which does not require a prioriinformation regarding structure-pharmacokinetic relationships among the antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. B. Mellett. Comparative drug metabolism.Progr. Drug. Res. 13:136–169 (1969).

    CAS  Google Scholar 

  2. R. L. Dedrick, K. B. Bischoff, and D. S. Zaharko. Interpecies correlation of plasma concentration history of methotrexate.Cancer Chemother. Part 1,54:95–101 (1970).

    CAS  Google Scholar 

  3. R. L. Dedrick. Animal scale up.J. Pharmacokin. Biopharm. 1:435–461 (1973).

    Article  CAS  Google Scholar 

  4. U. Klotz, K. H. Antonin, and P. R. Bieck. Pharmacokinetics and plasma binding of diazepam in man, dog, rabbit, guinea pig, and rat.J. Pharmacol. Exp. Ther. 199:67–73 (1976).

    CAS  PubMed  Google Scholar 

  5. C. H. Walker. Species differences in microsomal monoxygenase activity and their relationship to biological half-lives.Drug Metab. Rev. 7:295–323 (1978).

    Article  CAS  PubMed  Google Scholar 

  6. C. H. Walker. Species variations in some hepatic microsomal enzymes that metabolize xenobiotics. In J. W. Bridges and L. F. Chasseaud (eds.),Progress in Drug Metabolism, Vol. 5, Wiley, London, 1980, Chap. 2, pp. 113–164.

    Google Scholar 

  7. R. L. Dedrick, D. D. Forester, J. N. Cannon, S. M. ElDareen, and L. B. Mellett. Pharmacokinetics of 1-β-D-arabino-furanosylcytosine (Ara-C) deamination in several species.Biochem. Pharmacol. 22:2405–2417 (1973).

    Article  CAS  PubMed  Google Scholar 

  8. N. Benowitz, R. P. Forsyth, K. L. Melmon, and M. Rowland. Lidocaine disposition kinetics in monkey and man I. Prediction by a perfusion model.Clin. Pharmacol. Ther. 16:87–98 (1974).

    CAS  PubMed  Google Scholar 

  9. H. Harashima, Y. Sawada, Y. Sugiyama, T. Iga, and M. Hanano. Analysis of non-linear tissue distribution of quinidine in rats by physiologically based pharmacokinetics and scale-up to humans.J. Pharmacokin. Biopharm. submitted for publication.

  10. Y. Igari, Y. Sugiyama, Y. Sawada, T. Iga, and M. Hanano. Prediction of diazepam disposition in the rat and man by a physiologically based pharmacokinetic model.J. Pharmacokin. Biopharm. 11:577–593 (1983).

    Article  CAS  Google Scholar 

  11. H. Boxenbaum. Interspecies variation in liver weight, hepatic blood flow, and antipyrine intrinsic clearance extrapolation of data to benzodiazepines and phenytoin.J. Pharmacokin. Biopharm. 8:165–176 (1980).

    Article  CAS  Google Scholar 

  12. H. Boxenbaum. Interspecies scaling, allometry, physiological time, and the ground plan of pharmacokinetics.J. Pharmacokin. Biopharm. 10:201–227 (1982).

    Article  CAS  Google Scholar 

  13. H. Boxenbaum. Comparative pharmacokinetics of benzodiazepines in dog and man.J. Pharmacokin. Biopharm. 10:411–426 (1982).

    Article  CAS  Google Scholar 

  14. A. Tsuji, E. Miyamoto, T. Terasaki, T. Yamana. Physiological pharmacokinetics ofβ-lactam antibiotics: penicillin V distribution and elimination after intravenous administration in rats.J. Pharm. Pharmacol. 31:116–119 (1979).

    Article  CAS  PubMed  Google Scholar 

  15. D. S. Greene, R. Quintiliani, and C. H. Nightingale. Physiological perfusion model for cephalosporin antibiotics 1: model selection based on blood drug concentrations.J. Pharm. Sci. 67:191–196 (1978).

    Article  CAS  PubMed  Google Scholar 

  16. A. Tsuji. Quantitative structure-pharmacokinetic relationship of drugs. In Kozokasseisokankonwakai (eds.),Structure-Activity Relationship-Quantitative Approaches. The Applications to Drug Design and Model-of-Action Studies. Kagaku no Ryoiki Zokan, Vol. 136, Nankodo, Tokyo and Kyoto, 1982, Chap. 10, pp. 229–251.

    Google Scholar 

  17. E. F. Adolph. Quantitative relations in the physiological constitutions of mammals.Science 109:579–585 (1949).

    Article  CAS  PubMed  Google Scholar 

  18. M. Komiya, Y. Kikuchi, A. Tachibana, and K. Yano. Absorption, distribution, metabolism and excretion of cefotetan (YM-09330), a new broad spectrum cephamycin, in experimental animals.Chemotherapy 30:106–118 (1982).

    CAS  Google Scholar 

  19. M. Komiya, Y. Kikuchi, A. Tachibana, and K. Yano. Pharmacokinetics of new broadspectrum cephamycin, YM-09330, parentally administered to various experimental animals.Antimicrob. Agents Chemother. 20:176–183 (1981).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. K. Nakagawa, M. Koyama, A. Tachibana, M. Komiya, Y. Kikuchi, and Y. Yano. Pharmacokinetics of cefotetan (YM-09330) in humans.Antimicrob. Agents Chemother. 22:935–941 (1982).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. H. Shindo, K. Kawai, T. Maeda, I. Igarashi, M. Tajima, and S. Sugawara. Absorption, distribution, excretion and metabolism of a new cephamycin antibiotic, CS-1170, in various animal species.Chemotherapy 26(s-5):99–114 (1978).

    CAS  Google Scholar 

  22. I. Saikawa, T. Yasuda, Y. Watanabe, H. Taki, N. Matsubara, T. Hayashi, K. Matsunaga, and R. Takata. Absorption, tissue distribution and excretion of cefoperazone (T-1551).Chemotherapy 28(s-6):163–172 (1980).

    Google Scholar 

  23. C. M. Metzler, G. L. Elfring, and A. J. McEwen. A package of computer programs for pharmacokinetic modeling,biometrics 30:562–563 (1974).

    Article  Google Scholar 

  24. T. Nakagawa, Y. Koyanagi, and H. Togawa. SALS, a computer program for statistical analysis with least squares fitting. Library program of the University of Tokyo Computer Center, Tokyo, Japan, 1978.

    Google Scholar 

  25. M. Gibaldi and D. Perrier.Drugs and Pharmaceutical Science, Vol. 1. Pharmacokinetics, 2nd ed. Marcel Dekker, New York, 1982, pp. 1–111.

    Google Scholar 

  26. B. Kemmerich, H. Lode, G. Belmega, T. Jendroschek, K. Borner, and P. Koeppe. Comparative pharmacokinetics of cefoperazone, cefotaxime, and moxalactam.Antimicrob. Agents Chemother. 23:429–434 (1983).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. T. Yoshida, Y. Kimura, and Y. Tochino. Pharmacokinetics of 6059-S in experimental animals.Chemotherapy 28(s-7):194–206 (1980).

    Google Scholar 

  28. K. Sugeno, H. Okabe, H. Tanaka, and R. Norikura. Disposition of 6059-S in rats, dogs and monkeys.Chemotherapy 28(s-7):207–235 (1980).

    CAS  Google Scholar 

  29. K. Nakagawa, M. Koyama, H. Matsui, C. Ikeda, K. Yanao, N. Nakatsuru, K. Yoshinaga, and T. Noguchi. Pharmacokinetics of cefpiramide (SM-1652) administered intravenously to healthy volunteers.Chemotherapy 31(s-l):144–157 (1983).

    CAS  Google Scholar 

  30. H. Matsui, K. Yano, and T. Okuda. Pharmacokinetics of the cephalosporin SM-1652 in mice, rats, rabbits, dogs, and rhesus monkeys.Antimicrob. Agents Chemother. 22:213–217 (1982).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. H. Imasaki, Y. Enjoh, H. Matsui, R. Kawai, S. Kawamura, and T. Okuda. Absorption, distribution, metabolism and excretion of14C-cefpiramide (14C-SM-1652) in rats after parenteral administration.Chemotherapy 31(s-l):124–134 (1983).

    CAS  Google Scholar 

  32. G. Levy. Effect of plasma protein binding on renal clearance of drugs.J. Pharm. Sci. 69:482–483 (1980).

    Article  CAS  PubMed  Google Scholar 

  33. M. Rowland, L. Z. Benet, and G. G. Graham. Clearance concepts in pharmacokinetics.J. Pharmacokin. Biopharm. 1:123–136 (1973).

    Article  CAS  Google Scholar 

  34. K. J. Child and M. G. Dodds. Mechanism of urinary excretion of cephaloridine and its effect on renal function in animals.Br. J. Pharmacol. Chemother. 26:108–119 (1966).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. G. R. Wilkinson and D. G. Shand. A physiological approach to hepatic drug clearance.Clin. Pharmacol. Ther. 18:377–390 (1975).

    CAS  PubMed  Google Scholar 

  36. L. Z. Benet and R. L. Galeazzi. Noncompartmental determination of the steady state volume of distribution.J. Pharm. Sci. 68:1071–1074 (1979).

    Article  CAS  PubMed  Google Scholar 

  37. O. Sugita, Y. Sawada, Y. Sugiyama, T. Iga, and M. Hanano. ESect of sulphaphenazole on tolbutamide distribution in rabbit. Analysis of interspecies difference in tissue distribution of tolbutamide.J. Pharm. Sci. 73:631–634 (1984).

    Article  CAS  PubMed  Google Scholar 

  38. S. Øie and T. N. Tozer. Effect of altered plasma protein binding on apparent volume of distribution.J. Pharm. Sci. 68:1203–1205 (1975).

    Article  Google Scholar 

  39. J. R. Gillete and J. R. Mitchell.Concepts in Biochemical Pharmacology, Other Aspects of Pharmacology, Springer-Verlag, New York, 1975, pp. 35–85.

    Book  Google Scholar 

  40. J. W. Prothero. Scaling of blood parameters in mammals.Comp. Biochem. Physiol. 67A:649–657 (1980).

    Article  Google Scholar 

  41. K. B. Bishoff, R. L. Dedrick, D. S. Zaharko, and J. A. Longstreth. Methotrexate pharmacokinetics.J. Pharm. Sci. 60:1128–1133 (1971).

    Article  Google Scholar 

  42. J. P. Holt and E. A. Rhode. Similarity of renal glomerular hemodynamics in mammals.Am. Heart. J. 92:465–472 (1976).

    Article  CAS  PubMed  Google Scholar 

  43. A. Tsuji, T. Yoshikawa, K. Nishide, H. Minami, M. Kimura, E. Nakashima, T. Terasaki, E. Miyamoto, C. H. Nightingale, and T. Yamana. Physiologically based pharmacokinetic model forβ-lactam antibiotics I: Tissue distribution and elimination in rats.J. Pharm. Sci. 72:1239–1252 (1983).

    Article  CAS  PubMed  Google Scholar 

  44. K. N. Brown and A. Percival. Penetration of antimicrobials into tissue culture cells and leukocytes.Scand. J. Infect. Dis. Suppl. 14:251–260 (1978).

    CAS  PubMed  Google Scholar 

  45. R. C. Prokesch and W. L. Hand. Antibiotic entry into human polymorphonuclear leukocytes.Antimicrob. Agents Chemother. 21:373–380 (1982).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. J. Katz, G. Bonoris, S. Golden, and A. L. Sellers. Extravascular albumin mass and exchange in rat tissues.Clin. Sci. 39:705–724 (1970).

    CAS  PubMed  Google Scholar 

  47. J. J. Fischer and O. Jardetzky. Nuclear magnetic relaxation study of intermolecular complexes. The mechanism of penicillin binding to serum albumin.J. Am. Chem. Soc. 87:3237–3244 (1965).

    Article  CAS  PubMed  Google Scholar 

  48. T. Watanabe, Y. Enjoji, M. Komiya, Kikuchi, R. Kawai, and S. Kawamura. Distribution, excretion and metabolism of14C-cefotetan (14C-YM-09330) in rats.Chemotherapy 30(s-1): 119–136 (1982).

    CAS  Google Scholar 

  49. M. Koyama, K. Nakagawa, M. Komiya, Y. Kikuchi, A. Tachibana, and K. Yano. Phase-I clinical study on cefotetan (YM-09330).Chemotherapy 30(s-l):150–162 (1982).

    CAS  Google Scholar 

  50. A. Saito, Y. Kato, K. Ishikawa, H. Uemura, M. Tomizawa, I. Nakayama, T. Sakuraba, K. Matsui, and O. Yajima. CS-1170: Pharmacokinetics and clinical evaluation. Chemotherapy26(s-5):145–154 (1978).

    Google Scholar 

  51. H. Matsui, Y. Noshiro, and K. Yano. Pharmacokinetics of cefpiramide (SM-1652), new broadspectrum and long-acting cephalosporin, parentally administered to laboratory animals.Chemotherapy 31(s-l): l14–123 (1983).

    Google Scholar 

  52. H. Yamada, T. Yoshida, T. Oguma, Y. Kimura, Y. Tochino, J. Kurihara, and T. Nagatake. Clinical pharmacology of 6059-S in healthy volunteers.Chemotherapy 28(s-7):251–262 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sawada, Y., Hanano, M., Sugiyama, Y. et al. Prediction of the disposition ofβ-lactam antibiotics in humans from pharmacokinetic parameters in animals. Journal of Pharmacokinetics and Biopharmaceutics 12, 241–261 (1984). https://doi.org/10.1007/BF01061720

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01061720

Key words

Navigation