Skip to main content
Log in

Theorems and implications of a model-independent elimination/distribution function decomposition of linear and some nonlinear drug dispositions. III. Peripheral bioavailahility and distribution time concepts applied to the evaluation of distribution kinetics

  • Pharmacometrics
  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

Disposition decomposition analysis (DDA) is applied to evaluate the rate and extent of drug delivery from the sampling compartment to the peripheral system, i.e., peripheral bioavailability. Four parameters are introduced which are useful in quantifying peripheral bioavailability. The compounded peripheral bioavailability, Fcomp,is the ratio between the total compounded amount of drug transferred to the peripheral system and the injected dose, D.The AUCperipheral bioavailability, FAUC,is the ratio between the area under the amount vs.time curves for the peripheral system and the sampling compartment. The distribution time td,is the time following an i.v. bolus at which the net transfer of drug to the peripheral system reverses in direction. The maximum peripheral bioavailability, Fmax,is the maximum fraction of an i.v. bolus dose that is present in the peripheral system at any one time. Equations are derived which permit estimation of those parameters from drug concentrations in the sampling compartment. Simple algorithms and a computer program are provided for estimating Fcomp, FAUC, td, Fmax,and other parameters relevant to DDA for drugs that exhibit a linear polyexponential bolus response. Estimates of Ecomp, FAUC, td,are presented for several drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. G. Wagner.Fundamentals of Clinical Pharmacokinetics, 1st ed., Drug Intelligence Publications, Hamilton, IL, 1975, pp. 337–342.

    Google Scholar 

  2. V. F. Smolen and R. D. Schoenwald. Drug absorption analysis from pharmacological data I: Method and confirmation exemplified for the mydriatic drug tropicamide.J. Pharm. Sci. 60:96–103 (1971).

    Article  CAS  PubMed  Google Scholar 

  3. V. F. Smolen and W. A. Weigand. Drug bioavailability and pharmacokinetic analysis from pharmacological data.J. Pharmacokin. Biopharm. 1:329–336 (1973).

    Article  Google Scholar 

  4. V. F. Smolen. Theoretical and computational basis for drug bioavailability determinations using pharmacological data. I. General considerations and procedures.J. Pharmacokin. Biopharm. 4:337–353 (1976).

    Article  CAS  Google Scholar 

  5. W. R. Gillespie and P. Veng-Pedersen. Theorems and implications of a model independent elimination/distribution function decomposition of linear and some nonlinear drug dispositions. II. Clearance concepts applied to the evaluation of distribution kinetics.J. Pharmacokin. Biopharm. 13:441–451 (1985).

    Article  CAS  Google Scholar 

  6. P. Veng-Pedersen and W. R. Gillespie. The mean residence time in peripheral tissue. A linear disposition parameter useful for evaluating drug's tissue distribution.J. Pharmacokin. Biopharm. 12:535–543 (1984).

    Article  CAS  Google Scholar 

  7. P. Veng-Pedersen and W. R. Gillespie. The mean residence time of drugs in the systemic circulation.J. Pharm. Sci. 74:791–792 (1985).

    Article  CAS  PubMed  Google Scholar 

  8. P. Veng-Pedersen. Theorems and implications of a model independent elimination/distribution function decomposition of linear and some nonlinear drug dispositions. I. Derivations and theoretical analysis.J. Pharmacokin. Biopharm. 12:627–648 (1984).

    Article  CAS  Google Scholar 

  9. C. D. Thron. Linearity and superposition in pharmacokinetics.Pharmacol. Rev. 26:3–31 (1974).

    CAS  PubMed  Google Scholar 

  10. G. B. Park, R. P. Kershner, J. Angellotti, R. L. Williams, L. Z. Benet, and J. Edelson, Oral bioavailability and intravenous pharmacokinetics of amrinone in humans.J. Pharm. Sci. 72:817–819 (1983).

    Article  CAS  PubMed  Google Scholar 

  11. M. Rowland and S. Riegelman. Pharmacokinetics of acetylsalicylic acid and salicylic acid after intravenous administration in man.J. Pharm. Sci. 57:1313–1319 (1968).

    Article  CAS  Google Scholar 

  12. P. K. Narang, J. Adir, J. Josselson, A. Yacobi, and J. Sadler. Pharmacokinetics of bretylium in man after intravenous administration.J. Pharmacokin. Biopharm. 8:363–372 (1980).

    Article  CAS  Google Scholar 

  13. P. J. PentikÄinen, P. J. Neuvonen, M. Kekki, and A. PenttilÄ. Pharmacokinetics of intravenously administered bumetanide in man.J. Pharmacokin. Biopharm. 8:219–228 (1980).

    Article  Google Scholar 

  14. N. S. Aziz, J. G. Gambertoglio, E. T. Lin, H. Grausz, and L. Z. Benet. Pharmacokinetics of cefamandole using a HPLC assay.J. Pharmacokin. Biopharm. 6:153–164 (1978).

    Article  CAS  Google Scholar 

  15. A. Gerardin, J. B. Lecaillon, J. P. Schoeller, G. Humbert, and J. Guibert. Pharmacokinetics of cefroxadin (CGP9000) in man.J. Pharmacokin. Biopharm. 10:15–26 (1982).

    Article  CAS  Google Scholar 

  16. J. T. Burke, W. A. Wargin, R. J. Sherertz, K. L. Sanders, M. R. Blum, and F. A. Sarubbi. Pharmacokinetics of intravenous chloramphenicol sodium succinate in adult patients with normal renal and hepatic function.J. Pharmacokin. Biopharm. 10:601–614 (1982).

    Article  CAS  Google Scholar 

  17. H. G. Boxenbaum, K. A. Geitner, M. L. Jack, W. R. Dixon, H. E. Spiegel, J. Symington, R. Christian, J. D. Moore, L. Wiessman, and S. A. Kaplan. Pharmacokinetic and biopharmaceutic profile of chlordiazepoxide-HCl in healthy subjects: Single-dose studies by the intravenous, intramuscular, and oral routes.J. Pharmacokin. Biopharm. 5:3–23 (1977).

    Article  CAS  Google Scholar 

  18. S. E. Tsuei, R. G. Moore, J. J. Ashley, and W. G. McBride. Disposition of synthetic glucocorticoids. I. Pharmacokinetics of dexamethasone in healthy adults.J. Pharmacokin. Biopharm. 7:249–264 (1979).

    Article  CAS  Google Scholar 

  19. S. A. Kaplan, M. L. Jack, K. Alexander, and R. E. Weinfeld. Pharmacokinetic profile of diazepam in man following single intravenous and oral and chronic oral administrations.J. Pharm. Sci. 62:1789–1796 (1973).

    Article  CAS  PubMed  Google Scholar 

  20. A. W. Kelman and B. Whiting. Modeling of drug response in individual subjects.J. Pharmacokin. Biopharm. 8:115–130 (1980).

    Article  CAS  Google Scholar 

  21. J. R. Koup, D. J. Greenblatt, W. J. Jusko, T. W. Smith, and J. R. Koch-Weser. Pharmacokinetics of digoxin in normal subjects after intravenous bolus and infusion doses.J. Pharmacokin. Biopharm. 3:181–192 (1975).

    Article  CAS  Google Scholar 

  22. P. G. Welling and W. A. Craig. Pharmacokinetics of intravenous erythromycin.J. Pharm. Sci. 67:1057–1059 (1978).

    Article  CAS  PubMed  Google Scholar 

  23. C. S. Lee, D. C. Brater, J. G. Gambertoglio, and L. Z. Benet. Disposition kinetics of ethambutol in man.J. Pharmacokin. Biopharm. 8:335–346 (1980).

    Article  CAS  Google Scholar 

  24. P. H. Hinderling, U. Gundert-Remy, D. Förster, and W. Gau. The pharmacokinetics of furazlocillin in healthy humans.J. Pharmacokin. Biopharm. 11:5–30 (1983).

    Article  CAS  Google Scholar 

  25. P. Chennavasin, R. A. Johnson, and D. C. Brater. Variability in derived parameters of furosemide pharmacokinetics.J. Pharmacokin. Biopharm. 9:623–633 (1981).

    Article  CAS  Google Scholar 

  26. M. Rowland, S. Riegelman, and W. L. Epstein. Absorption kinetics of griseofulvin in man.J. Pharm. Sci. 57:984–989 (1968).

    Article  CAS  PubMed  Google Scholar 

  27. R. Platzer, G. Reutemann, and R. L. Galeazzi. Pharmacokinetics of intravenous isosorbide dinitrate.J. Pharmacokin. Biopharm. 10:575–586 (1982).

    Article  CAS  Google Scholar 

  28. D. J. Greenblatt, R. I. Shader, K. Franke, D. S. MacLaughlin, J. S. Harmatz, M. D. Allen, A. Werner, and E. Woo. Pharmacokinetics and bioavailability of intravenous, intramuscular, and oral lorazepam in humans.J. Pharm. Sci. 68:57–63 (1979).

    Article  CAS  PubMed  Google Scholar 

  29. D. J. Greenblatt, M. Divoll, J. S. Harmatz, and R. I. Shader. Pharmacokinetic comparison of sublingual lorazepam with intravenous, intramuscular, and oral lorazepam.J. Pharm. Sci. 71:248–252 (1982).

    Article  CAS  PubMed  Google Scholar 

  30. M. R. Dobrinska, W. Kukovetz, E. Beubler, H. Lorraine Leidy, H. J. Gomez, J. Demetriades, and J. A. Bolognese. Pharmacokinetics of the pivaloyloxyethyl (POE) ester of methyldopa, a new prodrug of methyldopa.J. Pharmacokin. Biopharm. 10:587–600 (1982).

    Article  CAS  Google Scholar 

  31. R. Jochemsen, J. J. H. Hogendoorn, J. Dingemanse, J. Hermans, J. K. Boeijinga, and D. D. Breimer. Pharmacokinetics and bioavailability of intravenous, oral, and rectal nitrazepam in humans.J. Pharmacokin. Biopharm. 10:231–245 (1982).

    Article  CAS  Google Scholar 

  32. J. W. Ward, A. McBurney, P. R. Farrow, and P. Sharp. Pharmacokinetics and hypotensive effect in healthy volunteers of pinacidil, a new potent vasodilator.Eur. J. Clin. Pharmacol. 26:603–608 (1984).

    Article  CAS  PubMed  Google Scholar 

  33. C. V. Manion, D. Lalka, D. T. Baer, and M. B. Meyer. Absorption kinetics of procainamide in humans.J. Pharm. Sci. 66:981–984 (1977).

    Article  CAS  PubMed  Google Scholar 

  34. R. Gomeni, G. Bianchetti, R. Sega, and P. L. Morselli. Pharmacokinetics of propanolol in normal healthy volunteers.J. Pharmacokin. Biopharm. 5:183–192 (1977).

    Article  CAS  Google Scholar 

  35. T. W. Guentert, N. H. G. Holford, P. E. Coates, R. A. Upton, and S. Riegelman. Quinidine pharmacokinetics in man: Choice of a disposition model and absolute bioavailability studies.J. Pharmacokin. Biopharm. 7:315–330 (1979).

    Article  CAS  Google Scholar 

  36. A. Rakhit, N. H. G. Holford, T. W. Guentert, K. Maloney, and S. Riegelman. Pharmacokinetics of quinidine and three of its metabolites in man.J. Pharmacokin. Biopharm. 12:1–21 (1984).

    Article  CAS  Google Scholar 

  37. P. A. Meredith, A. W. Kelman, H. L. Elliott, and J. L. Reid. Pharmacokinetic and pharmacodynamic modelling of trimazosin and its major metabolite.J. Pharmacokin. Biopharm. 11:323–335 (1983).

    Article  CAS  Google Scholar 

  38. R. P. Brent.Algorithms for minimization without derivatives, Prentice-Hall, Englewood Cliffs, NJ, 1973, chap. 4.

    Google Scholar 

  39. G. E. Forsythe, M. A. Malcolm, and C. B. Moler.Computer methods for mathematical computations, Prentice-Hall, Englewood Cliffs, NJ, 1977, pp. 161–166.

    Google Scholar 

  40. W. R. Gillespie and P. Veng-Pedersen. The determination of mean residence time using statistical moments:It is correct.J. Pharmacokin. Biopharm. 13:549–554 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veng-Pedersen, P., Gillespie, W.R. Theorems and implications of a model-independent elimination/distribution function decomposition of linear and some nonlinear drug dispositions. III. Peripheral bioavailahility and distribution time concepts applied to the evaluation of distribution kinetics. Journal of Pharmacokinetics and Biopharmaceutics 15, 281–304 (1987). https://doi.org/10.1007/BF01066323

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01066323

Key words

Navigation