Skip to main content
Log in

Proportional anatomical stereotactic atlas for visual interpretation of brain SPET perfusion images

  • Original Article
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

A semi-automatic method was developed to determine the anterior (AC) and posterior (PC) commissures on brain single-photon emission tomographic (SPET) perfusion images, and then to draw the proportional anatomical Talairach's grid on each axial SPET image. First, the AC-PC line was defined on SPET images from the linear regression of four internal landmarks (frontal pole of the brain, inferior limit of the anterior corpus callosum, sub-thalamic point and occipital pole). Second, the SPET position of AC and PC points on the AC-PC line was automatically determined from measurements made on hard copies of magnetic resonance (MR) images of the patients. Finally, a proportional Talairach's grid was automatically drawn on each axial SPET image. To assess the accuracy of localization of AC and PC points, co-registered technetium-99m hexamethylpropylene amine oxime SPET and MR images from 11 subjects were used. The mean displacements between estimated points on SPET and true points on MRI (Δx=sagittal, Δy=frontal and Δz=axial displacement) were calculated. The mean displacements (in mm) were Δx=−1.4±1.8, Δy=−1.7±3.3 and Δz=−1.1±2.5 for AC, and Δx=−1.8±1.8, Δy=0.3±3.2 and Δ=−1.3±2.7 for PC. These displacements represented an error of less than 5 mm at the anterior or posterior pole of the brain or at the vertex. Intra- and inter-observer comparisons did not reveal significant differences in mean displacements. Thus, this semi-automatic method results in reproducible and accurate stereotactic localization of SPET perfusion abnormalities. This method can be used routinely for repeat follow-up studies in the same subject as well as in different individuals without requiring SPET MRI co-registration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mazziotta J, Pelizzari C, Chen G, Bookstein F, Valentino D. Region of interest issues: the relationship between structure and function in the brain. J Cereb Blood Flow Metab 1991; 11: A51-A56.

    PubMed  Google Scholar 

  2. Pelizzari C, Chen G, Spelbring D, Weichselbaum R, Chen C. Accurate three-dimensional registration of CT, PET, and/or MR images of the brain. J Comput Assist Tomogr 1989; 13: 20–26.

    PubMed  Google Scholar 

  3. Shukla SS, Honeyman JC, Crosson B, Williams CM, Nadeau SE. Method for registering brain SPET and MR images. J Comput Assist Tomogr 1992; 16: 966–970.

    PubMed  Google Scholar 

  4. Mangin J, Frouin V, Block I, Bendriem B, Lopez-Krake J. Fast-non supervised 31) registration of PET and MR images of the brain. J Cereb Blood Flow Metab 1994; 14:749–762.

    PubMed  Google Scholar 

  5. Ichise M, Toyama H, Vines DC, Chung DG, Kirsh JC. Neuro-anatomical localization for clinical SPET perfusion brain imaging: a practical proportional grid method. Nucl Med Commun 1992; 13: 861–866.

    PubMed  Google Scholar 

  6. Minoshima S, Koeppe R, Frey K, Ishihara M, Kuhl D. Stereotactic PET atlas of human brain: aid for visual interpretation of functional brain images. J Nucl Med 1994; 35: 949–954.

    PubMed  Google Scholar 

  7. Talairach J, Tournoux P.Coplanar stereotaxic atlas of the human brain. New York: Thieme, 1988.

    Google Scholar 

  8. Talarach J, Tournoux P.Referentially oriented cerebral MRI anatomy. Atlas of stereotaxic anatomical correlation for gray and white matter. New York: Thieme, 1993.

    Google Scholar 

  9. Latchaw R, Lunsford L, Kennedy W. Reformatted imaging to define the intercommissural line for CT-guided stereotaxic functional neurosurgery.AJNR Am J Neuroradiol 1985; 50: 429–433.

    Google Scholar 

  10. Steinmetz H, Fürst G, Freund H. Cerebral cortical localization: application and validation of the proportional grid system in MR imaging.J Comput Assist Tomogr 1989; 13: 10–19.

    PubMed  Google Scholar 

  11. Fox P, Perlmutter J, Raichle M. A stereotactic method of anatomical localization for positron emission tomography.J Comput Assist Tomogr 1985; 9: 141–153.

    PubMed  Google Scholar 

  12. Véra P, Habert M, Landré E, Munari C, Chauvel P, Devaux B, Turak B, Chassoux F, Ghossub M, Missir O, Askienazy S. Interictal brain SPET in frontal epilepsy: correlation with stereo-electroencephalography.Nucl Med Commun 1995; 16: 591–598.

    PubMed  Google Scholar 

  13. Friston K, Passingham R, Nutt J, Heather J, Sawle G, Frackowiak R. Localisation in PET images: direct fitting of the intercommissural (AC-PC) line.J Cereb Blood Flow Metab 1989; 9: 690–695.

    PubMed  Google Scholar 

  14. Minoshima S, Koeppe RA, Mintun MA, Berger KL, Taylor SF, Frey KA, Kuhl DE. Automated detection of the intercommissural line for stereotactic localization of functional brain images.J Nucl Med 1993; 34: 322–9.

    PubMed  Google Scholar 

  15. Evans A, Marett S, Neelin P, Collins L, Worsley K, Dai W, Milot S, Meyer E, Bub D. Anatomical mapping of functional activation in stereotactic coordinate space.Neuro Image 1992; 1: 43–63.

    PubMed  Google Scholar 

  16. Migneco O, Darcourt J, Benoliel J, Martin F, Robert P, Bussiere-Lapalus F, Mena I. Computerized localization of brain structures in single photon emission computed tomography using a proportional anatomical stereotactic atlas.Comput Med Imaging Graph 1994; 18: 413–422.

    PubMed  Google Scholar 

  17. Tokunaga A, Takase M, Otaki K. The glabella-inion line as a baseline for CT scanning of the brain.Neuroradiology 1977; 17: 400–406.

    Google Scholar 

  18. Steinmetz H, Fürst G, Freund H. Variation of perisylvian and calcarine anatomic landmarks within stereotaxic proportional coordinates.AJNR Am J Neuroradiol 1990; 11: 1123–1130.

    PubMed  Google Scholar 

  19. Thurfjell L, Bohm C, Greitz T, Eriksson L, Ingvar M. Accuracy and precision in image standardization in intra- and intersubject comparisons. In: Thatcher R, Hallett M, Zeffiro T, Roy John E, Huerta M, eds.Functional neuroimaging. San Diego: Academic Press; 1994: 121–130.

    Google Scholar 

  20. Chabriat H, Levasseur M, Vidailhet M, Loc'h C, Maziere B, Bourguignon M, Bonnet A, Zilbovicius M, Raynaud C, Agid Y, Syrota A, Samson Y. In-vivo SPET imaging of D2 receptor with iodine-iodolisuride: results in supranuclear palsy.J Nucl Med 1992; 33: 1481–1485.

    PubMed  Google Scholar 

  21. Grangeat P, Guillemaud R, Rizo P, Sauze R, Donner Q, Gorius J. Cone-beam SPET with a tilted detector.Comput Med Imaging Graph 1993; 17:279–287.

    PubMed  Google Scholar 

  22. Evans A, Beil C, Marrett S, Thompson CJ, Hakin A. Anatomical-functional correlation using an adjustable MRI-based region of interest atlas with positron emission tomography.J Cereb Blood Flow Metab 1988; 8: 513–530.

    PubMed  Google Scholar 

  23. Mountz J, Zhang B, Liu H, Inampudi C. A reference method for correlation of anatomic and functional brain images: validation and clinical application.Semin Nucl Med 1994; 24: 256–271.

    PubMed  Google Scholar 

  24. Stollberger R, Fazekas F, Payer F, Flooh E. Morphology-oriented analysis of cerebral SPET using matched magnetic resonance images.Nucl Med Commun 1995; 16:265–272.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Véra, P., Farman-Ara, B., Stiévenart, JL. et al. Proportional anatomical stereotactic atlas for visual interpretation of brain SPET perfusion images. Eur J Nucl Med 23, 871–877 (1996). https://doi.org/10.1007/BF01084359

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01084359

Key words

Navigation