Skip to main content
Log in

Formation of hypochlorite, chlorate and oxygen during NaCl electrolysis from alkaline solutions at an RuO2/TiO2 anode

  • Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

On-site electrolysis of a weak alkaline solution of NaCl has been applied to an increasing extent for disinfection. To optimize the electrolytic cell and the electrolysis conditions, the current efficiency for hypochlorite, chlorate and oxygen formation at a commercial RuO2/TiO2 anode were determined under various conditions. It was found that for solution with low NaCl concentrations, (lower than 200 mol m−3), and at 298 K, solution flow velocity of 0.075 ms−1 and high current density, (higher than 2 kA m−2), hypochlorite formation is determined by mass transfer of chloride. The formation of chlorate in weakly alkaline media at a chlorine and oxygen-evolving anode is ascribed to two reactions, namely, the direct oxidation of chloride to chlorate and the conversion of hypochlorite. This is suggested to split the well-known electrochemical Foerster reaction into a chemical reaction for the conversion of hypochlorite in chlorate and the electrochemical oxidation reaction of water. It is proposed that in an acidic reaction layer at the anode the mechanism of chlorate formation may be given by the following:

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A c :

electrode surface area (m2)

c i :

concentration of speciesi (mol m−3)

c i, 0 :

c i att c=0 (mol m−3)

D i :

diffusion constant of speciesi (m2 s−1)

E :

electrode potential versus saturated calomel electrode (V)

F :

Faraday constant (C mol−1)

i :

current (A)

j :

current density (A m−2)

j d :

diffusion-limiting current density (A m−2)

h i :

slope ofn i/c 3 curve (m3 s−1)

k d, i :

diffusion mass-transfer coefficient of speciesi (m s−1)

k d, f, i :

k d, i at forced convection of solution and in the absence of bubble (m s−1) evolution

N i :

quantity of speciesi formed during the electrolysis (mol)

n i :

rate of formation for speciesi (mol s−1)

n 4, S :

n 4 determined by diffusion limitation of hypochlorite (mol s−1)

t :

time (s)

t e :

time of electrolysis (s)

T :

absolute temperature (K)

v 0 :

average flow velocity of solution in the anodic compartment of the cell at the level of the leading edge of the electrode (m s−1)

Φ i :

current efficiency for speciesi

Φ i, o :

Φ i att e=0

av:

average

d:

diffusion

e:

electrolysis, electrode

f:

forced convection

ox:

oxygen

References

  1. N. Ibl and H. Vogt, in ‘Comprehensive Treatise of Electrochemistry’, Vol. 2 (edited by J. O'M. Bockris, B. E. Conway, E. Yeager and R. E. White, Plenum Press, New York and London, (1981), p. 167.

    Google Scholar 

  2. D. M. Novak, B. V. Tilak and B. E. Conway, in ‘Modern Aspects of Electrochemistry’ Vol. 14 (edited by J. O'M. Bockris et al.), Plenum Press, New York (1988). pp. 195–318.

    Google Scholar 

  3. P. Hersch, British Patent 707 323 (awarded to the Mond Nickel Co., Ltd.), 14 April 1954.

  4. W. J. Baker, J. F. Combs, T. L. Zinn, A. W. Wotring and R. F. Wall,Ind. Eng. Chem. 51 (1959) 727.

    Google Scholar 

  5. H. Thielemann,Mikrochimica Acta (Wien) (1971) 746.

  6. T. Tang and G. Gordon,Anal. Chem. 52 (1980) 1430.

    Google Scholar 

  7. Oké—Idem, Environ. Sci. Technol. 18 (1984) 212.

    Google Scholar 

  8. D. IJspeerd, W. H. Willink and H. J. Henning,Fresenius Z. Anal. Chemie 288 (1977) 357.

    Google Scholar 

  9. H. Rilbe, in ‘Electrophoretic Techniques’, (edited by C. F. Simpson and M. Whittaker), Academic Press, London (1983) p. 1.

    Google Scholar 

  10. F. M. Everaerts and T. P. E. M. Verheggen, in ‘Electrophoretic Techniques’, (edited by C. F. Simpson and M. Whittaker), Academic Press, London (1983) p. 1.

    Google Scholar 

  11. L. J. J. Janssen,J. Appl. Electrochem. 17 (1987) 1177.

    Google Scholar 

  12. K. J. Vetter, ‘Elektrochmische Kinetik’, Springer Verlag, Berlin (1961), p. 153.

    Google Scholar 

  13. F. Foerster, ‘Elektrochemie wässriger Lösungen’, 4th ed., G. Bredig Barth, Leipzig (1923) p. 643.

    Google Scholar 

  14. L. R. Czarnetzki, Thesis, Eindhoven, University of Technology (1989).

  15. L. R. Czarnetzki and L. J. J. Janssen, in ‘Modern Chlor-Alkali Technology’, Vol. 4 (edited by N. M. Prout and J. S. Moorhouse), (1990) p. 313.

  16. D. Landolt and N. Ibl,Electrochim. Acta 15 (1970) 1165.

    Google Scholar 

  17. N. Ibl and D. Landolt,J. Electrochem. Soc. 115 (1968) 713.

    Google Scholar 

  18. A. Rius and J. Llopis,An. Fis Quin 41 (1945) 1030.

    Google Scholar 

  19. V. A. Shlyapnikov,Sov. Electrochem. 7 (1971) 1080.

    Google Scholar 

  20. L. R. Czarnetzki and L. J. J. Janssen,Electrochim. Acta 33 (1988) 561.

    Google Scholar 

  21. B. K. Sadananda Rao and V. S. Somanchi,J. Techn (India) 21 (1983) 529.

    Google Scholar 

  22. A. Tasaka and T. Tojo,J. Electrochem. Soc. 132 (1985) 1855.

    Google Scholar 

  23. W. M. Latimer, ‘The oxidation states of the elements and their potentials in aqueous solution’ 2nd edition, Prentice-Hall, Englewood Cliffs, NJ, (1956).

    Google Scholar 

  24. N. Munichandraih and S. Sathyanarayana,J. Appl. Electrochem. 17 (1987) 33.

    Google Scholar 

  25. J. C. Morris,J. Phys. Chem. 70 (1966) 3798.

    Google Scholar 

  26. M. W. Lister,Can. J. Chem. 34 (1956) 465.

    Google Scholar 

  27. Idem 30 (1952) 879.

    Google Scholar 

  28. J. D'Ans and H. E. Freund,Z. Elektrochemie 61 (1957) 10.

    Google Scholar 

  29. D. V. Kohoulina and L. J. Krishtalik,Elektrokhymiya 7 (1971) 346.

    Google Scholar 

  30. B. V. Tilak, K. Viswanathan and C. G. Radar,J. Electrochem. Soc. 128 (1981) 1228.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czarnetzki, L.R., Janssen, L.J.J. Formation of hypochlorite, chlorate and oxygen during NaCl electrolysis from alkaline solutions at an RuO2/TiO2 anode. J Appl Electrochem 22, 315–324 (1992). https://doi.org/10.1007/BF01092683

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01092683

Keywords

Navigation