Skip to main content
Log in

Vibronic pairwise charge transfer in copper-oxide sheets: A possible approach to high temperature superconductivity theory

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Summary

To accommodate the number of holes and fractional number of atoms in doped highT c superconductors, and to produce a periodic structure with given symmetry, we postulate a quadruple cell with four copper atoms on the CuO2 layer. The quadruple cell structure hasD 2h symmetry which can be distorted toC 2h geometry underB 1g vibration. Such a structure allows the interconversion of different spin angular momenta into paired spins similar to Cooper pairs. It also provides vibronic interactions that lower the energy of the ground state. For electron (hole) pairing, we construct the running wave Bloch sums consisting of linear combination of bonding/antibonding geminals (instead of one-electron atomic orbitals) in these quadruple cells. For “bond” movement we construct the Bloch sums consisting of linear combination of “Covalon” waves in quadruple cells related to the movement of conjugate (alternating) bonds. In both cases the pair-wise charge (hole/electron) transfer is coupled with antisymmetric vibrations under a double-well potential related to Peierls distortion. The vibronic mixing of different running bonds with different antisymmetric vibrations at various distances, accounts for the different long-range order of charge transfer. Our formulations represent an alternative view of BCS theory, Bisoliton theory and Resonanting Valence Bond theory by using a quantum chemical, position-space approach to a more tight binding situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bednorz JG, Mueller KA (1986) Z Phys B64:189

    Google Scholar 

  2. Poole Jr CP, Datta T, Farach HA (1988) Copper oxide superconductors. Wiley, New York

    Google Scholar 

  3. Phillips JC (1989) Physics of highT c superconductors. Academic Press, New York

    Google Scholar 

  4. Rao CNR, Raveau B (1989) Account Chem Res 22:106

    Google Scholar 

  5. Bardeen J, Cooper LN, Schrieffer JR (1957) Phys Rev 106:162; 108:1175

    Google Scholar 

  6. Kittel C (1963) Quantum theory of solids. Wiley, New York

    Google Scholar 

  7. Rose-Innes AC, Rhoderick EH (1978) Introduction to superconductivity. Pergaman, Oxford

    Google Scholar 

  8. Tinkham M (1975) Introduction to superconductivity. R. F. Krieger, Malabar, Florida

    Google Scholar 

  9. Schrieffer JR (1983) Theory of superconductivity. Addison-Wesley, New York

    Google Scholar 

  10. Cohen RE, Pickett WE, Krakauer H (1989) Phys Rev Lett 62:831 (1990) 64:2575

    Google Scholar 

  11. Hybertsen MS, Stechel EB, Schluter M, Jennison DR (1990) Phys Rev B41:11068

    Google Scholar 

  12. Cava RJ (1990) Science 247:656

    Google Scholar 

  13. Whangbo M-H, Torardi CC (1991) Accounts Chem Res 24:127

    Google Scholar 

  14. Chiu YN (1989) J Chin Chem Soc 36:487; (1989); (1993) European J Solid State Inorg Chem T30:1119

    Google Scholar 

  15. Tokura Y, Takagi H, Uchida S (1989) Nature 337:345

    Google Scholar 

  16. Birgeneau RJ (1990) Am J Phys 58:28

    Google Scholar 

  17. Whangbo M-H, Evain M, Beno MA, Geiser U, Williams JM (1987) Inorg Chem 26:2566; 26:1829

    Google Scholar 

  18. Chiu YN (1972) J Chem Phys 56:4882

    Google Scholar 

  19. Brodsky MB (1991) MRS Bulletin P31

  20. Tinkham M (1964) Group theory and quantum mechanics. McGraw-Hill, New York.

    Google Scholar 

  21. Chiu YN (1979) Phys Rev A20:32 and references cited therein

  22. Chiu YN, Meiling Gong (1990) Chem Phys 145:397

    Google Scholar 

  23. Herzberg G (1966) Electronic spectra and electronic structure of polyatomic molecules. D. Van Nostrand, Princeton, NJ

  24. Chiu YN (1984) J Phys Chem 88:5820

    Google Scholar 

  25. Alexandrov AS, Ranninger J (1981) Phys Rev B23:1796

    Google Scholar 

  26. Alexandrov AS, Ranninger J, Robaszkiewicz S (1986) Phys Rev B33:4526

    Google Scholar 

  27. Alexandrov AS (1988) Phys Rev B38:925

    Google Scholar 

  28. Stavola M, Krol DM, Weber W, Sunshine SA, Jayarama A, Kouroukis GA, Cava RJ, Rietman EA (1987) Phys Rev B36:850

    Google Scholar 

  29. Clougherty DP, Johnson KH McHenry ME (1989) Physica C 162–164:1475

    Google Scholar 

  30. Johnson KH, Clougherty DP, McHenry ME (1989) Modern Phys Lett 3:1367 (1991); In: Ashkeazi et al. (eds) High-temperature superconductivity. Plenum Press, New York, p 341

    Google Scholar 

  31. Wang FE, Chiu YN (1976) Chem Phys 12:225; YN Chiu, FE Wang (1976) Chem Phys 18:301

    Google Scholar 

  32. Chiu YN, Wang FE (1982) J Solid State Chem 45:353; (1982) Inorg Chem 21:4264

    Google Scholar 

  33. Hook JR, Hall HE (1991) Solid state physics. Wiley New York

    Google Scholar 

  34. Christman JR (1988) Fundamentals of solid state physics. Wiley, New York

    Google Scholar 

  35. Davydov AS (1988) Phys Stat Sol (b) 146:619; (1990) Phys Reports 190:191

    Google Scholar 

  36. Davydov AS, Ermakov VN (1988) Phys Stat Sol (b) 148:305

    Google Scholar 

  37. Craig DP, Walmsley SA (1968) Excitons in molecular crystals. Benjamen, New York

    Google Scholar 

  38. Hochstrasser RM (1966) Ann Rev Phys Chem. 17:457

    Google Scholar 

  39. Robinson GW (1970) Ann Rev Phys Chem 21:429

    Google Scholar 

  40. Davydov AS (1962) Theory of molecular excitons. McGraw-Hill, New York

    Google Scholar 

  41. Chiu YN (1976) J Phys Chem 80:992

    Google Scholar 

  42. Bell RP (1980) The tunnel effect in chemistry. Chapman and Hall, London

    Google Scholar 

  43. Marcus RA, Sutin N (1985) Biochimica et Biophysica Acta 811:265

    Google Scholar 

  44. Chiu YN (1976) J Chem Phys 64:2997; Chiu YN, Friedrich B, Maring W, Niedner G, Noll M, Toennies JP (1988) J Chem Phys 88:6814

    Google Scholar 

  45. Anderson PW (1987) Science 235:1196

    Google Scholar 

  46. Anderson PW, Baskaran G, Zou Z, Hsu T (1987) Phys Rev Lett 38:2790

    Google Scholar 

  47. Lynn JW (ed) (1990) High temperature superconductors. Springer, New York

    Google Scholar 

  48. Burns G (1982) High temperature superconductivity. Academic Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiu, YN., Brown, S.H., Sondergaard, N. et al. Vibronic pairwise charge transfer in copper-oxide sheets: A possible approach to high temperature superconductivity theory. Theoret. Chim. Acta 90, 205–224 (1995). https://doi.org/10.1007/BF01113469

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01113469

Key words

Navigation