Skip to main content
Log in

Magnetooptics of gas lasers

  • Published:
Journal of Soviet Laser Research Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature Cited

  1. S. G. Rautian and I. I. Sobel'man, “Study of atoms moving in the field of a standing wave,” Zh. Éksp. Teor. Fiz.,44, No. 3, 934–945 (1963).

    Google Scholar 

  2. H. Haken and H. Sauermann, “Frequency shifts of laser modes in solid state and gaeous systems,” Z. Phys.,176, No. 1, 47–62 (1963).

    Google Scholar 

  3. S. G. Rautian and T. A. Germogenova, “Stimulated emission of atoms moving in the field of a strong standing wave,” Opt. Spektrosk.,17, No. 2, 157–167 (1964).

    Google Scholar 

  4. W. E. Lamb, “Theory of an optical laser,” Phys. Rev.,134, No. 6A, 1429–1450 (1964).

    Google Scholar 

  5. D. I. Blokhintsev, Principles of Quantum Mechanics [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  6. P. A. Apanasevich, Principles of the Theory of Interaction of Light with Matter [in Russian], Nauka i Tekhnika, Minsk (1977).

    Google Scholar 

  7. S. G. Rautian, G. I. Smirnov, and A. M. Shalagin, Nonlinear Resonances in Spectra of Atoms and Molecules [in Russian], Nauka, Novosibirsk (1979).

    Google Scholar 

  8. I. I. Sobelman, Introduction to the Theory of Atomic Spectra, Pergamon Press, Oxford (1973).

    Google Scholar 

  9. A. R. Edmonds, Angular Momenta in Quantum Mechanics, CERN 55-26, Geneva (1955).

  10. M. I. D'yakonov, “On the theory of resonant scattering of light by a gas in the presence of a magnetic field,” Zh. Éksp. Teor. Fiz.,47, No. 6, 2213–2221 (1964).

    Google Scholar 

  11. M. P. Chaika, Interference of Degenerate Atomic States [in Russian], Leningrad State Univ. (1975).

  12. B. I. Stepanov, “Violation of Bouguer's law in media with negative absorption coefficient,” Dokl. AN BSSR,5, No. 11, 489–491 (1961).

    Google Scholar 

  13. S. G. Rautian, “Some questions of the theory of gas lasers,” Trudy FIAN,43, 3–115 (1969).

    Google Scholar 

  14. W. R. Bennett, “Hole burning effects in a He−Ne optical laser,” Phys. Rev.,126, No. 2, 580–593 (1962).

    Google Scholar 

  15. V. S. Letokhov and V. P. Chebotaev, Nonlinear Laser Spectroscopy, Springer, Berlin (1977).

    Google Scholar 

  16. W. W. Rigrod, “Gain saturation and output power of optical lasers,” J. Appl. Phys.,34, No. 9, 2602–2609 (1963).

    Google Scholar 

  17. B. I. Stepanov and V. P. Gribkovskii, “Use of probability method for the calculation of the optical characteristics of lasers,” Usp. Fiz. Nauk,82, No. 2, 201–220 (1964).

    Google Scholar 

  18. W. A. Shurcliff, Polarized Light, Production and Use, Harvard Univ. Press, Cambridge (1962).

    Google Scholar 

  19. R. M. Azzam and N. M. Bashara, Ellipsometry and Polarized, Light, Elsevier (1977).

  20. H. de Lang, “Polarization properties of optical resonators passive and active,” Philips Res. Rep., Suppl., No. 8, 3–75 (1967).

    Google Scholar 

  21. W. Van Haeringen, “Polarization properties of a single-mode operation gas laser in a small magnetic field, Phys. Rev.,158, No. 2, 256–272 (1967).

    Google Scholar 

  22. M. I. D'yakonov and V. I. Perel', “On the theory of gas discharge in a magnetic field,” Opt. Spektrosk.,30, No. 3, 472–280 (1966).

    Google Scholar 

  23. C. H. Wang, W. J. Tomlinson, and R. T. George, “Collision-induced anisotropic relaxation in a gas laser,” Phys. Rev.,181, No. 1, 125–136 (1969).

    Google Scholar 

  24. N. M. Fadeeva and N. M. Terent'ev, Tables of Probability Integrals of Complex Argument [in Russian], Gostekhizdat, Moscow (1954).

    Google Scholar 

  25. A. P. Voitovich and A. Ya. Smirnov, “Stability of oscillation modes in a gas laser with nonlinear selective losses,” Zh. Prikl. Spektrosk.,16, No. 4, 633–637 (1972).

    Google Scholar 

  26. A. I. Alekseev and V. M. Galitskii, “Influence of atomic collisions on the polarization of laser radiation,” Zh. Éksp. Teor. Fiz.,57, No. 3, 1002–1011 (1969).

    Google Scholar 

  27. M. I. D'yakonov and V. I. Perel', “Relaxation of coherence of excited atoms in collisions,” Zh. Éksp. Teor Fiz.,48, No. 1, 345–352 (1965).

    Google Scholar 

  28. V. N. Rebane, “Influence of collisions on the polarization of resonance fluorescence,” Opt. Spektrosk.,24, No. 2, 296–298 (1968).

    Google Scholar 

  29. C. H. Wang and W. J. Tomlinson, “Collision-induced anisotropic relaxation in bases,” Phys. Rev.,181, No. 1, 115–124 (1969).

    Google Scholar 

  30. V. I. Perel' and I. V. Rogova, “Relaxation of the distribution of excited atoms in velocity and polarization in complete imprisonment of resonant radiation,” Zh. Éksp. Teor. Fiz.,61, No. 5, 1814–1821 (1971).

    Google Scholar 

  31. A. Tumaikin, W. Van Haeringen, and D. Lenstra, “Polarization properties of single mode gas laser with unusual mode patterns,” Opt. Commun.,38, No. 4, 303–308 (1971).

    Google Scholar 

  32. V. Evtuhov and A. E. Siegman, “Twisted-mode technique for obtaining axially uniform energy density in a laser cavity,” Appl. Opt.,4, No. 1, 142–143 (1965).

    Google Scholar 

  33. A. Le Floch, R. Le Naour, and G. Stephan, “Analysis of the Lamb-dip Structure with linear and helicoidal polarizations,” Phys. Rev. Lett.,39, No. 25, 1611–1614 (1977).

    Google Scholar 

  34. A. P. Voitovich and M. V. Dubovik, “Investigation of temporal and energy characteristics of pulsed atomic gas lasers in a magnetic field,” Zh. Prikl. Spektrosk.,27, No. 5, 809–815 (1977).

    Google Scholar 

  35. E. V. Baklanov, S. G. Rautyan, B. I. Troshin, and V. P. Chebotaev, “Fluctuations in buildup of radiation in gas lasers,” Zh. Éksp., Teor. Fiz.,56, No. 4, 1120–1131 (1969).

    Google Scholar 

  36. G. V. Melekhin and G. P. Melekhina, “Influence of radiation polarization on the interaction of two lasing-channel modes coupled by a common level,” Opt. Spektrosk.,35, No. 4, 724–735 (1973).

    Google Scholar 

  37. L. M. Khayutin, “Lasers on coupled transitions with arbitrary radiation polarization,” Opt. Spektrosk.,47, No. 5, 954–959 (1979).

    Google Scholar 

  38. L. M. Khayutin, “Polarization effects in interactions of waves generated by lasers on coupled transitions,” Opt. Spektrosk.,49, No. 2, 359–363 (1980).

    Google Scholar 

  39. A. P. Kazantsev, S. G. Rautian, and G. I. Surdutovich, “Theory of gas laser with nonlinear absorption,” Zh. Éksp. Teor. Fiz.,54, No. 5, 1409–1421 (1968).

    Google Scholar 

  40. A. P. Voitovich and A. P. Shkadarevich, “Alignment of atomic states by a laser-radiation field and its influence on the characteristics of a laser,” Opt. Spektrosk.,38, No. 6, 1176–1181 (1975).

    Google Scholar 

  41. S. É. Frish, Optical Spectra of Atoms [in Russian], Fizmatgiz, Moscow (1963).

    Google Scholar 

  42. N. M. Belousova, V. M. Kiselev, and V. N. Kurzenkov, “Spectrum of stimulated emission of atomic iodine on the hyperfine structure of the 52P1/2–52P3/2 (7603 cm−1) transition,” Opt. Spektrosk.,33, No. 2, 203–209 (1972).

    Google Scholar 

  43. W. C. Hwang and J. V. V. Kasper, “Zeeman effects in the hyperfine structure of atomic iodine photodissociation laser emission,” Chem. Phys.,13, No. 5, 511–514 (1972).

    Google Scholar 

  44. I. M. Belousova, B. D. Bobrov, V. M. Kiselev et al., “Photodissociation127I laser in a magnetic field,” Zh. Éksp. Teor. Fiz.,65, No. 2, 524–536 (1973).

    Google Scholar 

  45. V. K. Isakov, V. M. Kiselev, and V. N. Kurzenkov, “Some polarization-frequency effects in stimulated emission of the iodine atom in a magnetic field,” Opt. Spektrosk.,39, No. 4, 739–744 (1975).

    Google Scholar 

  46. I. M. Belousova, B. D. Bobrov, V. M. Kiselev, et al., “The127I atom in a magnetic field,” Opt. Spektrosk.,37, No. 1, 38–47 (1974).

    Google Scholar 

  47. M. Sargent, W. E. Lamb, and R. L. Fork, “Theory of a Zeeman laser,” Phys. Rev.,164, No. 2, 436–465 (1967).

    Google Scholar 

  48. W. J. Tomlinson and R. L. Fork, “Properties of gaseous optical masers in weak axial magnetic fields,” Phys. Rev.,164, No. 2, 466–483 (1967).

    Google Scholar 

  49. A. P. Voitovich, “Interaction of linearly polarized waves in a gas laser with a longitudinal magnetic field,” Opt. Spektrosk.,47, No. 6, 1172–1177 (1979).

    Google Scholar 

  50. W. Culshaw and J. Kannelaud, “Mode interaction in a Zeeman laser,” Phys. Rev.,156, No. 2, 308–319 (1967).

    Google Scholar 

  51. G. V. Krivoshchekov, P. F. Kurbatov, V. S. Smirnov, and A. M. Tumaikin, “Bistability and polarization regimes of generation of a xenon laser on the 5d[3/2] 01 –6p[3/2]1 transition of the136Xe isotope in a weak magnetic field,” Kvantovaya Élektron. (Moscow),9, No. 5, 869–875 (1982).

    Google Scholar 

  52. M. I. D'yakonov and V. I. Perel', “Dependence of the radiation intensity of a gas laser on the magnetic field,” Zh. Éksp. Teor. Fiz.,50, No. 2, 448–456 (1966).

    Google Scholar 

  53. G. E. Notkin, S. G. Rautian, and A. A. Feoktistov, “On the theory of spontaneous emission of atoms situated in an external field,” Zh. Éksp. Teor. Fiz.,52, No. 6, 1673–1687 (1967).

    Google Scholar 

  54. M. S. Feld and A. Javan, “Laser-induced line-narrowing effects in coupled Doppler-broadened transitions,” Phys. Rev.,177, No. 2, 540–562 (1969).

    Google Scholar 

  55. H. R. Schlossberg and A. Javan, “Hyperfine structure and paramagnetic properties of excited states of xenon studied with a gas laser,” Phys. Rev.,17, No. 25, 1242–1244 (1966).

    Google Scholar 

  56. J. S. Levine, P. A. Bonczyk, and A. Javan, “Observation of hyperfine level crossing in stimulated emission,” Phys. Rev. Lett.,22, No. 7, 267–270 (1969).

    Google Scholar 

  57. V. N. Lisitsyn and B. I. Troshin, “Interaction of traveling waves in a gas ring laser,” Opt. Spektrosk.,22, No. 4, 666–668 (1967).

    Google Scholar 

  58. N. G. Basov, É. M. Belenov, M. V. Danileiko, and V. V. Nikitin, “Ring laser with a nonlinearly absorbing cell,” Zh. Éksp. Teor. Fiz.,57, No. 6, 1991–1997 (1969).

    Google Scholar 

  59. N. G. Basov, É. M. Belenov, M. V. Danileiko, and V. V. Nikitin, Kvantovaya Élektron. (Moscow), No. 1, 42–52 (1971).

    Google Scholar 

  60. A. P. Voitovich, N. I. Kabaev, A. Ya. Smirnov, and A. P. Shkadarevich, “Investigation of frequency selection in a helium-neon laser with an absorbing neon cell inside the cavity,” Opt. Spektrosk.,30, No. 5, 940–946 (1971).

    Google Scholar 

  61. A. P. Voitovich and A. Ya. Smirnov, “Some singularities of frequency selection in a gas laser with a nonlinearly absorbing cell,” Dokl. AN BSSR,15, No. 3, 206–208 (1971).

    Google Scholar 

  62. A. P. Voitovich, M. V. Dubovik, and A. P. Shkadarevich, “Narrow resonances in polarization characteristics of gas lasers in a magnetic field, and their use in high-resolution spectroscopy,” Kvantovaya Élektron. (Moscow),2, No. 9, 1903–1909 (1975).

    Google Scholar 

  63. W. R. Bennett, Gas lasers [Russian translation], Mir, Moscow (1964), pp. 9–119.

    Google Scholar 

  64. M. I. D'yakonov, “On the theory of a gas laser in a weak longitudinal magnetic field,” Zh. Éksp. Teor. Fiz.,49, No. 4, 1169–1175 (1965).

    Google Scholar 

  65. N. N. Rozanov and A. V. Tulub, “On the theory of the Zeeman effect in gas lasers,” Dokl. Akad. Nauk SSSR,165, No. 6, 1280–1283 (1965).

    Google Scholar 

  66. M. I. D'yakonov and S. A. Fridrikhov, “Gas laser in a magnetic field,” Usp. Fiz. Nauk,90, No. 4, 565–600 (1966).

    Google Scholar 

  67. W. Culshaw and J. Kannelaud, “Hanle effect in the He−Ne laser,” Phys. Rev.,136, No. 5A, 1209–1221 (1964).

    Google Scholar 

  68. J. Kannelaud and W. Culshaw, “Coherence effects in gaseous lasers with axial magnetic fields. II. Experimental,” Phys. Rev.,141, No. 1, 237–245 (1966).

    Google Scholar 

  69. R. Paananen, C. Tang, and H. Stats, “Zeeman effect in He−Ne gas lasers,” Trudy IIÉR,51, No. 1, 98–105 (1963).

    Google Scholar 

  70. G. Durand, “Magnetic depolarizations of a vapor and polarization of a Zeeman laser,” IEEE J. Quantum Electron.,2, No. 9, 448–455 (1966).

    Google Scholar 

  71. D. Lenstra, “Polarization properties of a single-mode gas laser in transverse magnetic fields,” Appl. Phys.,17, No. 3, 257–267 (1978).

    Google Scholar 

  72. D. Lenstra and W. Van Haeringen, “Mode polarization of a single mode gas laser in transverse magnetic fields,” Opt. Commun.,23, No. 3, 311–314 (1977).

    Google Scholar 

  73. V. G. Gudelev and V. M. Yasinskii, “Two-frequency helium-neon laser in a transverse magnetic field,” Kvantovaya Élektron. (Moscow),9, No. 7, 1420–1428 (1982).

    Google Scholar 

  74. H. Kalas and M. Chaika, “Alignment of excited states of neon in a dc discharge,” Opt. Spektrosk.,27, No. 4, 694–696 (1969).

    Google Scholar 

  75. S. A. Gonchukov, V. M. Ermachenko, A. G. Izmailov, et al., “Gas laser with phase anisotropy in a constant magnetic field,” Kvantovya Élektron. (Moscow),8, No. 2, 333–340 (1981).

    Google Scholar 

  76. É. E. Fradkin and L. M. Khayutin, “On the theory of a gas laser in a magnetic field,” Zh. Éksp. Teor. Fiz.,59, No. 5, 1634–1644 (1970).

    Google Scholar 

  77. D. R. Handon and M. Sargent, “Theory of a Zeeman ring laser: general formalism,” Phys. Rev.,9, No. 1A, Pt. 2, 466–480 (1974).

    Google Scholar 

  78. W. W. Chow, J. B. Hambenne, and D. R. Hanson, et al., “Theory of a Zeeman ring laser: special cases,” IEEE J. Quantum Electron.,15, No. 11, 1301–1309 (1979).

    Google Scholar 

  79. É. E. Fradkin and L. M. Khayutin, “Competition of opposing waves in a gas ring laser in a longitudinal magnetic field,” Opt. Spektrosk.,28, No. 1, 89–92 (1970).

    Google Scholar 

  80. B. V. Rybakov, S. S. Skulachenko, A. M. Khromykh, and I. I. Yudin, “Method of measuring collision broadening of spectral lines,” Zh. Éksp. Teor. Fiz.,64, No. 4, 1146–1148.

  81. V. I. Sardyko, “Investigation of Zeeman ring laser in the regime of generation of various modes in opposite directions,” Zh. Prikl Spektrosk.,23, No. 1, 47–53 (1975).

    Google Scholar 

  82. V. I. Sardyko and A. Ya. Smirnov, “Use of circular dichroism to obtain unidirectional lasing in ring lasers,” Opt. Spektrosk.,52, No. 4, 713–718 (1982).

    Google Scholar 

  83. A. P. Voitovich and V. I. Sardyko, “Properties of ring lasers containing optical elements with magnetic circular dichroism,” Kvantovaya Élektron.,5, No. 5, 965–972 (1978).

    Google Scholar 

  84. W. W. Chow, J. B. Hambenne, and T. J. Hutchings, et al., “Multioscillator laser gyros,” IEEE J. Quantum Electron.,16, No. 9, 918–935 (1980).

    Google Scholar 

  85. V. A. Alekseev, B. Ya. Zel'dovich, and I. I. Sobel'man, “Effects of parity nonconservation in atomic phenomena,” Usp. Fiz. Nauk,118, No. 3, 385–408 (1976).

    Google Scholar 

  86. I. B. Khriplovich, Parity Nonconservation in Atomic Phenomena [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  87. E. B. Aleksandrov, “Optical manifestigations of interference of nondegenerate atomic states,” Usp. Fiz. Nauk,197, No. 4, 592–622 (1972).

    Google Scholar 

  88. T. O. Carroll and G. J. Wolga, “Double resonance gas laser spectroscopy in neon,” IEEE J. Quantum Electron.,2, No. 9, 456–460 (1966).

    Google Scholar 

  89. É. G. Pestov and G. S. Kruglik, “Polarization effect of weakening of competition of opposing waves in ring lasers,” Zh. Prikl. Spectrosk.,16, No. 6, 985–990 (1972).

    Google Scholar 

  90. V. A. Sokolov and É. E. Fradkin, “Two-mode lasing regimes in a ring laser with two-isotope active medium,” Kvantovaya Élektron. (Moscow),2, No. 4, 807–811 (1975).

    Google Scholar 

  91. M. I. D'yakonov and V. I. Perel', “Influence of imprisonment of resonant radiation on the characteristics of a gas laser,” Zh. Éksp. Teor. Fiz.,58, No. 3, 1090–1097 (1970).

    Google Scholar 

  92. A. P. Voitovich, “Phase-polarization methods of producing frequency-selective losses within the limits of the gain profile of a laser,” Dokl. AN BSSR,19, No. 11, 988–991 (1975).

    Google Scholar 

  93. A. Le Floch and G. Stephan, “Measure de rotations Faraday dans un laser anisotrope,” Rev Phys. Appl.,10, No. 1, 1–6 (1975).

    Google Scholar 

  94. A. P. Voitovich, V. S. Kalinov, and V. M. Metel'skii, “Phase-polarization method of determining the losses of a laser cavity in the generation regime,” Opt. Spektrosk.,48, No. 1, 104–107 (1980).

    Google Scholar 

  95. A. P. Voitovich and V. I. Sardyko, “Laser intracavity methods of measuring natural optical activity,” Opt. Spektrosk.,53, No. 6, 1079–1085 (1982).

    Google Scholar 

  96. M. A. Novikov and A. D. Tertyshnik, “Optical cavities with anisotropic elements,” Izv. Vyssh. Uchebn. Zaved., Radiofiz.,19, No. 3, 364–372 (1976).

    Google Scholar 

  97. A. P. Shkadarevich, “Rotation of polarization plane of He−Ne laser emission (λ=1.15μm) in a magnetic field,” Zh. Prikl. Spectrosk.,21, No. 6, 1005–1008 (1974).

    Google Scholar 

  98. A. P. Voitovich and V. G. Dubovets, “Influence of dispersion of active medium on the lasing intensity in a gas laser with a longitudinal magnetic field,” Zh. Prikl. Spektrosk.,27, No. 1, 32–36 (1977).

    Google Scholar 

  99. A. P. Voitovich, “Frequency characteristics of a gas laser with nonlinear selective losses,” Preprint, Phys. Inst. Beloruss. Acad. Sci., Minsk (1972).

    Google Scholar 

  100. A. P. Voitovich and A. P. Shkadarevich, “Phase polarization nonlinear high resolution spectroscopy of media in a longitudinal magnetic field,” Opt. Commun.,28, No. 3, 311–314 (1979).

    Google Scholar 

  101. E. B. Aleksandrov and V. K. Prilipko, “Effect of frequency crossing in a laser,” Opt. Spektrosk.,48, No. 4, 827–828 (1980).

    Google Scholar 

  102. A. P. Voitovich, V. G. Doubovets, and A. P. Shkadarevich, “Influence of interference of atomic state on the polarization characteristics of the emission of a multifrequency gas laser,” Opt. Spektrosk.,44, No. 5, 981–987 (1978).

    Google Scholar 

  103. V. M. Remachenko, I. P. Konovalov, V. N. Petrovskii, et al., “Two-mode He−Ne laser in an axial magnetic field,” Zh. Éksp. Teor. Fiz.,76, No. 6, 1950–1959 (1979).

    Google Scholar 

  104. Yu. A. Vdovin, M. A. Gubin, V. M. Ermachenko, and E. D. Protsenko, “Interaction of modes with orthogonal and parallel polarizations in a gas laser,” Kvantovaya Élektron. (Moscow), No. 4, 35–42 (1973).

    Google Scholar 

  105. E. B. Aleksandrov and V. S. Zapasskii, “Millisecond sensitivity of polarimetric measurements,” Opt. Spektrosk.,41, No. 5, 855–858 (1976).

    Google Scholar 

  106. R. G. Buser, J. Kainz, and J. Sullivan, “Influence of magnetic fields upon gas discharge lasers,” Appl. Opt.,2, No. 8, 861–862 (1963).

    Google Scholar 

  107. T. M. Perchanok, S. V. Pechurina, and S. A. Fridrikhov, “Investigation of the influence of a longitudinal magnetic field on the operation of He−Ne laser in the pulsed regime,” Zh. Tekh. Fiz.,37, No. 6, 1166–1169 (1967).

    Google Scholar 

  108. B. Harm, “Sättigungsverhalten eines Gas Lasers unter Berücksightigung der Oszillationsmöglichkeit in Vershiedenen Polarizationszuständen,” Z. Angew. Phys.,24, No. 2, 112–117 (1968).

    Google Scholar 

  109. A. P. Voitovich and A. P. Shkadarevich, “Separation of the effects of polarizational and spectral saturation inhomogeneities in gas lasers and determination of the relaxation constants,” Opt. Spektrosk.,41, No. 4, 627–633 (1976).

    Google Scholar 

  110. E. F. Ishchenko and Yu. M. Klimkov, Lasers [in Russian], Sov. Radio. Moscow (1968).

    Google Scholar 

  111. É. G. Pestov and G. M. Lapshin, Quantum Electronics [in Russian], Voenizd., Moscow (1972).

    Google Scholar 

  112. A. P. Voitovich, A. A. Pavlyushik, and A. P. Shkadarevich, “Influence of cavity ansiotropy on the energy properties of a gas laser in a longitudinal magnetic field,” Zh. Prikl. Spectrosk.,23, 981–987 (1975).

    Google Scholar 

  113. G. Hermann and A. Scharmann, “Untersuchunger zur Zeeman-Spektroskopie mit Hilfe nichtlinearen Resonanzen eines Multimoden-Lasers,” Z. Physik,254, No. 1, 46–56 (1972).

    Google Scholar 

  114. A. P. Voitovich, V. S. Kalinov, A. Ya. Smirnov, and L. L. Teplyashin, “Influence of linear phase anisotropy induced in the active medium on the emission properties of a gas laser,” Zh. Prikl. Spektrosk.,36, No. 5, 717–722 (1982).

    Google Scholar 

  115. A. P. Voitovich and V. I. Sardyko, “Phase-polarization methods of controlling the lasing frequency spectrum in lasers with anisotropic active media,” Dokl. AN BSSR,21 No. 2, 120–123 (1977).

    Google Scholar 

  116. I. A. Andronova and E. A. Kuvatova, “Influence of longitudinal magnetic field on independent effects in a ring laser,” Kvantovaya Élektron. (Moscow),4, No. 6, 1227–1236 (1977).

    Google Scholar 

  117. I. A. Andronova, E. A. Kuvatova, and Yu. A. Mamaev, “Nonreciprocal effects in a ring laser on application of a transverse magnetic field to an active medium,” Kvantovaya Élektron. (Moscow), No. 8, 1681–1689 (1979).

    Google Scholar 

  118. A. A. Turkin, “Experimental investigation of independent effects in a ring laser upon application of a transverse magnetic field to the active medium,” Kvantovaya Élektron. (Moscow),7, No. 1, 72–79 (1980).

    Google Scholar 

  119. A. A. Kuznetsov, D. I. Mash, and N. V. Skuratova, “Influence of axial magnetic field on the output power of a neon-helium laser operating in the regime of simultaneous lasing of the 3.39 and 0.6328 μm lines,” Radiotekh. Élektron.,12, No. 1, 150–153 (1967).

    Google Scholar 

  120. A. P. Voitovich and A. P. Shkadarevich, “Study of energy characteristics of competing transitions in an He−Ne laser with active medium placed in a magnetic, field,” Zh. Prikl. Spektrosk.,20, No. 4, 606–611 (1974).

    Google Scholar 

  121. T. Uchida and A. Ueki, “Self-locking of gas laser,” IEEE J. Quantum Electron.,3, No. 1, 17–30 (1967).

    Google Scholar 

  122. A. Dienes, “Interaction of linearly and circularly polarized fields in a laser amplifier with an axial magnetic field.” Appl. Phys. Lett.,9, No. 4, 142–145 (1966).

    Google Scholar 

  123. V. S. Letokhov, “Generation of ultrashort light pulses in a laser with a nonlinear absorber,” Zh. Éksp. Teor. Fiz.,55, No. 3, 1077–1089 (1968).

    Google Scholar 

  124. P. W. Smith, “Mode-locking of lasers,” Proc. IEEE,58, No. 9, 1342–1357 (1970).

    Google Scholar 

  125. Yu. I. Zaitsev, “Fluctuations of intensity of He−Ne laser emission at 0.63-μm wavelength,” Izv. Vyssh. Uchebn. Zaved., Radiofiz.,12, No. 1, 60–71 (1969).

    Google Scholar 

  126. D. M. Thymian and J. A. Carruthers, “Second harmonic enhancement using a self-locked 0.63-μm He−Ne laser,” IEEE J. Quantum Electron.,5, No. 2, 83–86 (1969).

    Google Scholar 

  127. A. Shimauchi, Y. Nishiyama, and M. Ohtsuka, “Effects of axial magnetic fields on the mode intensity spectrum and the total output power of a He−Ne laser,” Sci., Light.,21, 22–43 (1982).

    Google Scholar 

  128. V. Yu. Petrun'kin, V. M. Nikolaev, O. I. Kotov, and B. V. L'vov, “Influence of magnetic field on the mode-locking regime in He−Ne lasers (λ-0.63 μm),” Zh. Tekh. Fiz.,44, No. 12, 2598–2600 (1974).

    Google Scholar 

  129. A. P. Voitovich, V. V. Dubinin, and A. Ya. Smirnov, “Mode selection in a gas laser with the aid of a magnetic field,” Zh. Prikl. Spektrosk.,22, No. 5, 809–813 (1975).

    Google Scholar 

  130. P. W. Smith, “Simultaneous phase-locking of longitudinal and transverse laser modes,” Appl. Phys. Lett.,13, No. 7, 235–237 (1968).

    Google Scholar 

  131. V. S. Arakelyan, N. V. Karlov, and A. M. Prokhorov, “Self-locking of transverse modes of a CO2 laser,” Pis'ma Zh. Éksp. Teor. Fiz.,10, No. 6, 279–282 (1969).

    Google Scholar 

  132. V. N. Lisitsyn and V. P. Chebatoev, “Hysteresis and ‘hard’ excitation in a gas laser,” Pis'ma Zh. Éksp. Teor. Fiz.,7, No. 1, 3–6 (1968).

    Google Scholar 

  133. A. A. Andronov, A. A. Vitt, and S. É. Khaikin, Theory of Oscillations, Pergamon, Oxford (1966).

    Google Scholar 

  134. A. P. Voitovich and A. Ya. Smirnov, “Influence of hysteresis on the one-frequency lasing band of a gas laser,” Zh. Prikl. Spektrosk.,22, No. 1, 47–51 (1975).

    Google Scholar 

  135. E. Yu. Andreeva, D. K. Terekhin, and S. A. Fridrikhov, “Polarization of emission of a one-frequency helium-neon laser, Opt. Spektrosk.,27, No. 5, 809–812 (1969).

    Google Scholar 

  136. A. P. Voitovich, “Hysteresis in a gas laser in the transition from the one-frequency to the two-frequency lasing regime,” Zh. Prikl. Spektrosk.,17, No. 1, 43–50 (1972).

    Google Scholar 

  137. A. P. Voitovich and A. Ya. Smirnov, “Generation of two frequencies in a gas laser with nonlinear selective losses,” Opt. Spektrosk.,34, No. 5, 925–930 (1973).

    Google Scholar 

  138. A. P. Voitovich, V. S. Kalinov, and A. Ya. Smirnov, “Competition between opposing waves and emission spectrum of a ring laser with selective losses produced by the resonance phase-polarization method,” Opt. Spektrosk.,55, No. 2, 351–357 (1983).

    Google Scholar 

  139. M. S. Borisova and A. M. Pyndyk, “Investigation of the lasing frequency spectrum of ionic lasers,” Radiotekh. Élektron.,13, No. 4, 754–756 (1968).

    Google Scholar 

  140. S. N. Atutov, S. N. Selznev, and A. M. Shalagin, “Selection of axial modes in an He−Ne laser with a longitudinal magnetic field,” Zh. Prikl. Spektrosk.,31, No. 6, 977–981 (1979).

    Google Scholar 

  141. A. G. Fox and Tingye Li, Bell. Sys. Tech. J.40, 433 (1961).

    Google Scholar 

  142. N. A. Borisevich and A. P. Voitovich, “Gas laser with selective losses,” Dokl. AN BSSR, 2, No. 4, 311–314 (1968).

    Google Scholar 

  143. V. S. Letokhov, “Frequency effects in a laser with nonlinearly absorbing gas,” Zh. Éksp. Teor. Fiz.,54, No. 4, 1244–1252 (1968).

    Google Scholar 

  144. V. S. Letokhov, “Spatial effects in saturation of linear absorption of a gas in an optical field,” Zh. Éksp. Teor. Fiz.,56, No. 5, 1748–1754 (1969).

    Google Scholar 

  145. V. N. Lisitsyn and V. P. Chebotaev, “Absorption saturation effects in a gas laser,” Zh. Éksp. Teor. Fiz.,54, No. 2, 419–423 (1968).

    Google Scholar 

  146. N. A. Borisevich, A. P. Voitovich, and A. N. Krasovskii, “Use of laser with selective losses to obtain one-frequency lasing,” Zh. Prikl. Spektrosk.,8, No. 4, 588–592 (1968).

    Google Scholar 

  147. V. P. Chebotyev, I. M. Beterov, and V. N. Lisitsyn, “Selective and self-locking of modes in a He−Ne laser with nonlinear absorption,” IEEE J. Quantum Electron.,4, No. 11, 788–790 (1968).

    Google Scholar 

  148. I. M. Beterov, V. N. Lisitsyn, and V. P. Chebotaev, “Selection and self-locking of oscillation modes in a laser with nonlinear absorption,” Radiotekh. Élektron.,14, No. 6, 1127–1129 (1969).

    Google Scholar 

  149. P. H. Lee, P. B. Schoefer, and W. B. Barker, “Single-mode power from a 6328-Å laser incorporating neon absorption,” Appl. Phys. Lett.,13, No. 11, 373–375 (1968).

    Google Scholar 

  150. N. V. Karlov, Yu. N. Petrov, and O. M. Stel'makh, “Control of frequency of a CO2 laser using a boron-trichloride filter,” Pis'ma Zh. Éksp. Teor. Fiz.,8, No. 7, 363–365 (1968).

    Google Scholar 

  151. I. Burak, J. I. Steinfeld, and D. G. Sutton, “CO2 laser output tuning by selective intracavity absorption,” J. Appl. Phys.,39, No. 9, 4464–4465 (1968).

    Google Scholar 

  152. Yu. N. Belyaev, A. M. Kiselev, and M. A. Novikov, “Tuning and stabilization of a laser frequency with the aid of anisotropic plates,” Izv. Vyssh. Uchebn. Zaved., Radiofiz.,13, No. 9, 1405–1408 (1970).

    Google Scholar 

  153. A. P. Voitovich, “Dispersion, of optical characteristics in the gain region and control of the frequency spectrum of the generated radiation,” Zh. Prikl. Spektrosk.,26, No. 3, 436–442 (1977).

    Google Scholar 

  154. A. P. Voitovich, A. P. Pavlyushik, and S. V. Panteleev, “Phase-polarization methods of controlling the frequency spectrum of generated radiation,” Kvantovaya Élektron. (Moscow),4, No. 1, 42–47 (1977).

    Google Scholar 

  155. A. P. Voitovich and S. V. Panteleev, “Frequency selection in gas lasers with the aid of the Faraday effect in the active medium,” Opt. Spektrosk.,42, No. 4, 681–686 (1977).

    Google Scholar 

  156. V. G. Dubovets, “Effect of dispersion of the active medium on mode interaction in a gas laser with a longitudinal magnetic field,” Zh. Prikl. Spektrosk.,30, No. 5, 821–828 (1979).

    Google Scholar 

  157. V. I. Sardyko, “Control of emission spectrum of a ring laser with the aid of magnetic-field-induced phase anisotropy of the active medium,” Kvantovaya Élektron. (Moscow),6, No. 1, 158–168 (1979).

    Google Scholar 

  158. M. A. Kos'mina, G. A. Strokovskii, T. B. Tolchinskaya, et al., “Control of the position and with the unidirectional lasing in a gas ring laser with the aid of a magnetic field,” Opt. Spektrosk.,51, No. 3, 385–388 (1981).

    Google Scholar 

  159. A. P. Voitovich, V. P. Gribkovskii, A. A. Pavlyushchik, et al., “Influence of magnetic-field-induced birefringence on the lasing spectrum of a semiconductor laser,” Kvantovaya Élektron. (Moscow),4, No. 5, 1128–1131 (1977).

    Google Scholar 

  160. V. S. Kalinov, “Change of dye-laser characteristics on application of a constant electric field to the active medium,” Zh. Prikl. Spektrosk.,38, No. 5, 742–745 (1983).

    Google Scholar 

  161. A. P. Voitovich and V. S. Kalinov, “Characteristics of lasers with condensed active media having linear anisotropy induced by polarized pump radiation,” Zh. Prikl. Spektrosk.,39, No. 1, 25–32 (1983).

    Google Scholar 

  162. A. P. Voitovich, V. G. Dubovets, and V. V. Mashko, “Effect of absorbing cell placed in a longitudinal magnetic field on the characteristics of a laser with an anisotropic cavity and with a condensed active medium,” Kvantovaya Élektron. (Moscow),8, No. 11, 2439–2446 (1981).

    Google Scholar 

  163. A. P. Voitovich, L. P. Runets, and A. Ya. Smirnov, “Narrowing and tie-in of emission spectrum of a dye laser with the atomic absorption line,” Pis'ma Zh. Tekh. Fiz.,6, No. 22, 1400–1403 (1980).

    Google Scholar 

  164. A. P. Voitovich, V. S. Kalinov, L. P. Runets, et al., “Control of emission spectra of lasers with the aid of linear phase anisotropy induced in the amplifying or absorbing medium by an external magnetic field,” Izv. AN SSSR, Ser. Fiz.,46, No. 10, 1992–1995 (1982).

    Google Scholar 

  165. L. A. Pakhomycheva, É. A. Sviridenkov, A. F. Suchin, et al., “Line, structure of generation spectra of lasers with inhomogeneous broadening of the gain line,” Pis'ma Zh. Éksp. Teor. Fiz.,12, No. 2, 60–63 (1970).

    Google Scholar 

  166. V. M. Baev, T. P. Belikova, E. A. Sviridenkov, and A. F. Suchkov, “Use of a cavity-type laser and spectroscope in continuous and semi-continuous operation,” Zh. Eksp. Teor. Fiz.,74, No. 1, 43–56 (1978).

    Google Scholar 

  167. A. P. Voitovich, V. V. Mashko, V. S. Kalinov, and L. P. Runets, “Influence of anisotropy of an absorbing medium placed in a dye-laser cavity on the characteristics of the generated radiation,” Dokl. AN BSSR,23, No. 12, 1092–1095 (1979).

    Google Scholar 

  168. A. P. Voitovich, “Phase-polarization laser spectroscopy,” Zh. Prikl. Spectrosk.,37, No. 6, 996–1010 (1982).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voitovich, A.P. Magnetooptics of gas lasers. J Russ Laser Res 8, 551–683 (1987). https://doi.org/10.1007/BF01120998

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01120998

Navigation