Skip to main content
Log in

Brain and Human pain: Topographic EEG amplitude and coherence mapping

  • Published:
Brain Topography Aims and scope Submit manuscript

Summary

Nineteen young healthy volunteers (8 males and 11 females) participated in an experimental ice-cube cold pressor test to study topographic changes of EEG parameters in response to painful stimulation. EEG was recorded with 19 electrodes and quantified by amplitude and coherence analyses. Mean amplitudes and values for local (between adjacent electrodes) and interhemispheric (between electrodes on homologous sites of both hemispheres) coherences were computed for six frequency bands. For the evaluation of changes between EEG at rest (baseline) and EEG during painful stimulation (right or left hand), non-parametric paired Wilcoxon tests were performed. The obtained descriptive error probabilities were presented in probability maps. In the behavioural pain tolerance and subjective pain ratings, no difference in gender or stimulation condition was observed. Under painful stimulation the results showed: (A) most pronounced decrease of Alpha amplitude in the central areas and some increase of high Beta amplitude; (B) increase of local coherence for Alpha and Beta2 mainly in central regions and centro-frontal leads; and (C) increase of interhemispheric coherence for Alpha and Beta2 in the central areas. The results of this study indicate clearly that peripheral painful stimulation is reflected by EEG changes. Decrease of EEG amplitude and simultaneous increase of EEG coherence in the central regions can be cortical correlates of human pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abt, K. Significance testing of many variables. Neurop-sychobiology, 1983, 9: 47–51.

    Google Scholar 

  • Abt, K. Descriptive data analysis (DDA) in quantitative EEG studies. In: D. Samson-Dollfus (Ed.), Statistics and Topography in Quantitative EEG. Elsevier, 1988: 150–160.

  • Backonja, M., Howland, E.W., Wang, J., Smith, J., Salinsky, M. and Cleeland, C.S. Tonic changes in alpha power during immersion of the hand in cold water. Electroenceph. Clin. Neurophysiol., 1991, 79: 192–203.

    PubMed  Google Scholar 

  • Backonja, M. and Howland E.W. Letter: Comments on P. Veerasarn and C.S. Stohler, Pain, 1992, 49: 349–360 and Chen et al, Pain, 1989, 37: 129–141. Pain, 1993, 53: 112–113.

    PubMed  Google Scholar 

  • Benignus, V.A. Estimation of the coherence spectrum and its confidence interval using the Fast Fourier Transform. IEEE Trans, on Audio and Electroacoustics, 1969, Vol AU-17, No 2: 145–149.

    Google Scholar 

  • Bromm, B. Pain-related components in the cerebral potential: Experimental and multivariate statistical approaches. In: B. Bromm (Ed.), Pain Measurement in Man: Neurophysiological Correlates of Pain. Elsevier, 1984: 257–290.

  • Chatrian, G.E., Canfield, R.O., Knauss, T.A. and Lettich, E. Cerebral responses to electrical tooth pulp stimulation in man. Neurology, 1975, 25: 745–757.

    PubMed  Google Scholar 

  • Chen, A.C.N., Chapman, R.C. and Harkin, S.W. Brain evoked potentials are functional correlates of induced pain in man. Pain, 1979, 6: 365–374.

    PubMed  Google Scholar 

  • Chen, A.C.N. and Treede, R-D. McGill pain questionnaire in assessing the differentiation of phasic and tonic pain: behavioral evaluation of the “pain inhibiting pain” effect. Pain, 1985, 22: 67–79.

    PubMed  Google Scholar 

  • Chen, A.C.N., Dworkin, S.R. and Haug, J. Human pain responsivity in a tonic pain model: psychological determinants. Pain, 1989a, 37: 143–160.

    PubMed  Google Scholar 

  • Chen, A.C.N., Dworkin, S.F., Haug, J. and Gehrig, J. Topographic brain measures of human pain and pain responsivity. Pain, 1989b, 37: 129–141.

    PubMed  Google Scholar 

  • Chen, A.C.N. Human brain measures of clinical pain, a review. Part I: topographic mapping. Pain, 1993a, 54(2): 115–132.

    PubMed  Google Scholar 

  • Chen, A.C.N. Letter: reply to the letter of M. Backonja and E.W. Howland. Pain, 1993b, 53(1):113.

    Google Scholar 

  • French, C.C. and Beaumont, J.G. A critical review of EEG coherence studies of hemisphere function. Int. J. Psychophysiology, 1984, 1: 241–254.

    Google Scholar 

  • Holm, St. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 1979, 6: 65–70.

    Google Scholar 

  • IBM-Scientific Subroutine Package. 1970, GH20-0205-4.

  • Jenkins, G.M. and Watts, D.G. Spectral analysis and its application. Holden Day, 1968.

  • John, E.R., Prichep, L., Ahn, H., Easton, P., Fridman, J. and Kaye, H. Neurometric evaluation of cognitive dysfunctions and neurological disorders in children. Progress in Neurobiology, 1983, 21: 239–290.

    PubMed  Google Scholar 

  • Petsche, H., Pockberger, H. and Rappelsberger, P. Musikrezeption, EEG und musikalische Vorbildung. Z. EEG-EMG, 1985, 16: 183–190.

    Google Scholar 

  • Petsche, H., Pockberger, H. and Rappelsberger, P. EEG topography and mental performance. In: F. Duffy (Ed.), Topographic mapping of brain electrical activity. Butterworth, 1986: 63–98.

  • Petsche, H., Lacroix, D., Lindner, K., Rappelsberger, P. and Schmidt-Henrich, E. Thinking with images or thinking with language: a pilot EEG probability mapping study. International Journal of Psychophysiology, 1992, 12: 31–39.

    PubMed  Google Scholar 

  • Pribram, K.H. Psychophysiology and the study of protocritic processes. In: N.P. Bechtereva (Ed.), Psychophysiology. Pergamon Press, 1981: 155–170.

  • Rappelsberger, P., Pockberger, H., Petsche, H. Computer aided EEG analysis: evaluation of changes during cognitive processes and topographic mapping. EDV in Medizin und Biologie, 1986, 17(3):45–53.

    Google Scholar 

  • Rappelsberger, P., Kriegisteiner, S., Mayerweg, M., Petsche, H., and Pockberger, H. Probability mapping of EEG changes: application to spatial imagination studies. Clin. Monitoring, 1987, 3: 320–322.

    Google Scholar 

  • Rappelsberger, P. and Petsche, H. Probability mapping: power and coherence analyses of cognitive processes. Brain Topography, 1988, 1: 46–54.

    PubMed  Google Scholar 

  • Rappelsberger, P. The reference problem and mapping of coherence: a simulation study. Brain Topography, 1989, 2: 63–72.

    PubMed  Google Scholar 

  • Rappelsberger, P., Lacroix, D. and Petsche, H. Amplitude and coherence mapping: its application in psycho- and patho-physiological studies. In: M. Rother and U. Zwiener (Eds.), Quantitative EEG analysis-clinical utility and new methods. Universittsverlag GmbH, Jena, 1993: 179–186.

    Google Scholar 

  • Shaw, J.C., O'Conor, K.P. and Ongley, O.G. EEG coherence as a measure of cerebral functional organization. In: M.A.B. Brazier and H. Petsche (Eds.), Architectonics of the Cerebral Cortex. Raven Press, 1978: 245–256.

  • Shaw, J.C. Correlation and coherence analysis of EEG: a selected tutorial review. Int. J. Psychophysiology, 1984, 1: 255–266.

    Google Scholar 

  • Stohler, C.S. Letter: response to M. Backonja and W. Howland. Pain, 1993, 53(1):113–134.

    Google Scholar 

  • Tucker D.M., Roth, D.L. and Bait, T.B. Functional connections among cortical regions: topography of EEG coherence. Electroencephal. clin. Neurophysiol., 1986, 63: 242–250.

    Google Scholar 

  • Vaccarino, A.L. and Melzack, R. Temporalprocessesof formalin pain: differential role of cingulum bundle, fornix pathway and medial bulboreticular formation. Pain, 1992, 49: 257–272.

    PubMed  Google Scholar 

  • Veerasarn, P. and Stohler, C.S. The effect of experimental muscle pain on the background electrical brain activity. Pain, 1992, 49: 349–360.

    PubMed  Google Scholar 

  • Weiss, S. EEG als Korrelat mentaler Prozesse: Spektralanalyse des Spontan-EEG in Ruhe und während sprachlicher Aufgaben. Thesis, University of Vienna, 1994.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This study was partly supported by the “Fonds zur Förderung der wissenschaftlichen Forschung” project S 49/02.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, A.C.N., Rappelsberger, P. Brain and Human pain: Topographic EEG amplitude and coherence mapping. Brain Topogr 7, 129–140 (1994). https://doi.org/10.1007/BF01186771

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01186771

Key words

Navigation