Skip to main content
Log in

Visibility with a moving point of view

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We investigate three-dimensional visibility problems in which the viewing position moves along a straight flightpath. Specifically we focus on two problems: determining the points along the flightpath at which the topology of the viewed scene changes, and answering ray-shooting queries for rays with origin on the flightpath. Three progressively more specialized problems are considered: general scenes, terrains, and terrains with vertical flightpaths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Abrahamson, N. Dadoun, D. K. Kirkpatrick, and T. Przytycka, A simple parallel tree contraction algorithm,Proc. 25th Annual Allerton Conf. on Communications, Control, and Computing, 1987, pp. 624–633.

  2. P. K. Agarwal,Intersection and Decomposition Algorithms for Planar Arrangements, Cambridge University Press, Cambridge, 1991.

    Google Scholar 

  3. M. J. Atallah, Some dynamic computational geometry problems,Comput. Math. Appl. 11 (1985), 1171–1181.

    Google Scholar 

  4. J. L. Bentley and T. A. Ottmann, Algorithms for reporting and counting geometric intersections,IEEE Trans. Comput. 28 (1979), 643–647.

    Google Scholar 

  5. R. Cole and M. Sharir, Visibility problems for polyhedral terrains,J. Symbolic Comput. 7 (1989), 11–30.

    Google Scholar 

  6. J. R. Driscoll, N. Sarnak, D. Sleator, and R. E. Tarjan, Making data structures persistent,J. Comput. Systems Sci. 38 (1989), 86–124.

    Google Scholar 

  7. H. Edelsbrunner, J. O'Rourke, and R. Seidel, Constructing arrangements of lines and hyper- planes with applications,SIAM J. Comput. 15 (1986), 341–363.

    Google Scholar 

  8. H. Fuchs, Z. M. Kedem, and B. F. Naylor, On visible surface generation bya priori tree structures,Comput. Graphics 14 (1980), 124–133.

    Google Scholar 

  9. S. Hart and M. Sharir, Nonlinearity of Davenport-Schinzel sequences and of generalized path compression schemes,Combinatorica 6 (1986), 151–177.

    Google Scholar 

  10. J. Hershberger, Finding the upper envelope ofn line segments in O(n logn) time,Inform. Process. Lett. 33 (1989), 169–174.

    Google Scholar 

  11. H. Hubschman and S. Zucker, Frame-to-frame coherence and the hidden surface computation: constraints for a convex world,Comput. Graphics 15 (1981), 45–54.

    Google Scholar 

  12. J. W. Jaromczyk and M. Kowaluk, Skewed projections with an application to line stabbing in R3,Proc. 4th ACM Symp. on Computational Geometry, 1988, pp. 362–370.

  13. S. R. Kosaraju and A. L. Delcher, Optimal parallel evaluation of tree-structured computation by ranking,VLSI Algorithms and Architectures: Proc. 3rd Aegean Workshop on Computing, 1988, pp. 101–110.

  14. D. T. Lee and F. P. Preparata, Location of a point in a planar subdivision and its applications,SIAM J. Comput. 6 (1977), 594–606.

    Google Scholar 

  15. M. McKenna, Worst-case optimal hidden surface removal,ACM Trans. Graphics 6 (1987), 19–28.

    Google Scholar 

  16. G. L. Miller and J. H. Reif, Parallel tree contraction and its applications,Proc. 26th IEEE Foundations of Computer Science, 1985, pp. 478–489.

  17. K. Mulmuley, A fast planar partition algorithm,I,Proc. 29th IEEE Foundations of Computer Science, 1988, pp. 580–589.

  18. K. Mulmuley, On obstructions in relation to a fixed viewpoint,Proc. 30th IEEE Foundations of Computer Science, 1989, pp. 592–597.

  19. K. Mulmuley, Hidden surface removal with respect to a moving view point,Proc. 23rd ACM Symp. on Theory of Computing, 1991, pp. 512–522.

  20. M. Overmars and M. Sharir, A simple output-sensitive algorithm for hidden surface removal,ACM Trans. Graphics 11 (1992), 1–11.

    Google Scholar 

  21. M. Paterson and F. F. Yao, Binary partitions with applications to hidden surface removal and solid modelling,Discrete Comput. Geom. 5 (1990), 485–504.

    Google Scholar 

  22. W. H. Plantinga and C. R. Dyer, Visibility, occlusion, and the aspect graph,Internat. J. Comput. Vision,5 (1990), 137–160.

    Google Scholar 

  23. W. H. Plantinga, C. R. Dyer, and B. Seales, Real-time hidden-line elimination for a rotating polyhedral scene using the aspect representation, Manuscript, 1988.

  24. F. P. Preparata and M. I. Shamos,Computational Geometry: An Introduction, Springer-Verlag, New York, 1985.

    Google Scholar 

  25. F. P. Preparata and R. Tamassia, Fully dynamic point location in a monotone subdivision,SIAM J. Comput. 18 (1989), 811–830.

    Google Scholar 

  26. J. H. Reif and S. Sen, An efficient output-sensitive hidden-surface removal algorithm and its parallelization,Proc. 4th ACM Symp. on Computational Geometry, 1988, pp. 194–200.

  27. M. Sharir, Almost linear upper bounds on the length of general Davenport-Schinzel sequences,Combinatorica 7 (1987), 131–143.

    Google Scholar 

  28. I. E. Sutherland, R. F. Sproull, and R. A. Schumacker, A characterization of ten hidden-surface algorithms,Comput. Surveys 6 (1974), 1–25.

    Google Scholar 

  29. G. R. Swart, A schema for real time hidden line removal, Technical Report, Department of Computer Science, University of Washington, 1984.

  30. A. Wiernik and M. Sharir, Planar realization of nonlinear Davenport-Schinzel sequences by segments,Discrete Comput. Geom. 3 (1988), 15–47.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Bernard Chazelle.

Supported in part by NSF Grant CCR87-00917 and a Guggenheim Fellowship. Work done while visiting Xerox PARC.

Work done while at Xerox PARC.

Work done while visiting Xerox PARC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bern, M., Dobkin, D., Eppstein, D. et al. Visibility with a moving point of view. Algorithmica 11, 360–378 (1994). https://doi.org/10.1007/BF01187019

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01187019

Key words

Navigation