Skip to main content
Log in

The localization of sodium and calcium to Schwann cell paranodal loops at nodes of Ranvier and of calcium to compact myelin

  • Published:
Journal of Neurocytology

Summary

High-voltage electron microscopy (HVEM) has been used to determine the distribution of cationic precipitates in myelinated axons resulting from the application of two cytochemical techniques: a direct osmium pyroantimonate treatment for precipitating Na+, Ca2+ and Mg2+; and a 5 mM Ca2+ inclusion procedure (Oschman & Wall) for imparting electron density to Ca2+ binding sites. Electron probe wavelength spectroscopy was then used on semi-thick tissue sections to identify the species of ions present in the following regions: Schwann cell paranodal loops, axoplasm at the node, compact myelin and extracellular matrix. With these combined procedures we were able to localize elevated concentrations of both Na+ and Ca2+ to cytoplasmic compartments of the Schwann cell paranodal loops, as well as to detect the presence of Ca2+ at elevated levels in compact myelin. The involvement of the Schwann cell paranodal loops in providing a source and/or sink for Na+ involved in impulse conduction is suggested by these results, and the significance of such a role is discussed. A role for Ca2+ in the formation and stabilization of myelin lamellae is also suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, B. L., Hill, A. V. &Howarth, J. V. (1958) The positive and negative heat production associated with a nerve impulse.Proceedings of the Royal Society of London, Series B 148, 167–75.

    Google Scholar 

  • Agnew, W. S., Levinson, S. R., Brabson, J. S. &Raferty, M. A. (1978) Purification of the tetrodotoxin-binding component associated with the voltage-sensitive sodium channel fromElectrophorus electricus electroplax membranes.Proceedings of the National Academy of Sciences (U.S.A.) 75, 2606–10.

    Google Scholar 

  • Akert, K., Sandri, C., Livingston, R. B. &Moor, H. (1974) Extracellular spaces and junctional complexes at the node of Ranvier. InActualités Neurophysiologiques (edited byMasson, E. C., pp. 9–22. Paris: Mounier.

    Google Scholar 

  • Bargmann, W. &Lindner, W. (1964) Uber den Feinbau des Nebennierenmarkes des Igels (Erinaceus europaeus L.).Zeitschrift für Zellforschung und mikroskopische Anatomie 64, 868–912.

    Google Scholar 

  • Detre, K. &White, C. (1970) The comparison of two Poisson-distributed observations.Biometrics 26, 851–4.

    Google Scholar 

  • Dörge, A., Rick, R., Gehring, K. &Thurau, K. (1978) Preparation of freeze-dried cryosections for quantitative X-ray microanalysis of electrolytes in biological soft tissues.Pflügers Archiv für die gesamte Physiologie des Menschen und der Tiere,373, 85–97.

    Google Scholar 

  • Ellisman, M. H. (1977) High voltage electron microscopy of cortical specializations associated with membranes at nodes of Ranvier.Journal of Cell Biology 75, 108a (abstract).

    Google Scholar 

  • Ellisman, M. H. (1979) Molecular specializations of the axon membrane at nodes of Ranvier are not dependent upon myelination.Journal of Neurocytology 8, 719–35.

    PubMed  Google Scholar 

  • Ellisman, M. H., Brooke, M. H., Kaiser, K. K. &Rash, J. E. (1978) Appearance in slow muscle sarcolemma of specializations characteristic of fast muscle after reinnervation by a fast muscle nerve.Experimental Neurology 58, 59–67.

    PubMed  Google Scholar 

  • Erlanger, J. &Blair, E. A. (1934) Manifestations of segmentation in myelinated axons.American Journal of Physiology 110, 287–311.

    Google Scholar 

  • Frankenhaeuser, B. (1952) The hypothesis of saltatory conduction.Cold Spring Harbor Symposia on Quantitative Biology 17, 27–32.

    PubMed  Google Scholar 

  • Hays, W. L. (1969)Statistics. London: Holt, Rinehart and Winston.

    Google Scholar 

  • Hess, A. &Young, J. Z. (1952) The nodes of Ranvier.Proceedings of the Royal Society of London, Series B 140, 301–20.

    Google Scholar 

  • Hill, A. V. &Howarth, J. V. (1958) The initial heat production of stimulated nerve.Proceedings of the Royal Society of London, Series B 148, 149–87.

    Google Scholar 

  • Hirano, A., Becker, N. H. &Zimmerman, H. H. (1969) Isolation of periaxonal space of central myelinated nerve fiber with regard to the diffusion of peroxidase.Journal of Histochemistry and Cytochemistry 17, 512–6.

    PubMed  Google Scholar 

  • Hirano, A. &Demitzer, H. M. (1969) The transverse bands as a means of access to the periaxonal space of the central myelinated nerve fiber.Journal of Ultrastructure Research 28, 141–9.

    PubMed  Google Scholar 

  • Huxley, A. F. &Stämpfli, R. (1949) Evidence for saltatory conduction in peripheral myelinated nerve fibres.Journal of Physiology 108, 315–39.

    Google Scholar 

  • Klein, R. L., Yen, S. S. &Thureson-Klein, A. (1972) Critique on the K-pyroantimonate method for semiquantitative estimation of cations in conjunction with electron microscopy.Journal of Histochemistry and Cytochemistry 20, 65–78.

    PubMed  Google Scholar 

  • Krishnan, N. &Singer, M. (1974) Localization of cations in the peripheral nerve fiber by the K-pyroantimonate method.Experimental Neurology 42, 191–205.

    PubMed  Google Scholar 

  • Landon, D. N. &Hall, S. (1976) The myelinated nerve fibre. InThe Peripheral Nerve (edited byLandon, D. N.), pp. 1–105. London: Chapman and Hall.

    Google Scholar 

  • Lane, B. P. &Martin, E. (1969) Electron probe analysis of cationic species in pyroantimonate precipitates in epon-embedded tissue.Journal of Histochemistry and Cytochemistry 14, 102–6.

    Google Scholar 

  • Langley, O. K. &Landon, D. N. (1967) A light and electron microscopical approach to the node of Ranvier and myelin of peripheral nerve fibres.Journal of Histochemistry and Cytochemistry 15, 722–31.

    PubMed  Google Scholar 

  • Langley, O. K. &Landon, D. N. (1969) Copper binding at nodes of Ranvier: A new electron histochemical technique for the demonstration of polyanions.Journal of Histochemistry and Cytochemistry 17, 66–9.

    PubMed  Google Scholar 

  • Levinson, S. R. &Ellory, J. C. (1973) Molecular size of the tetrodotoxin binding sites estimated by irradiation inactivation.Nature New Biology 245, 122–3.

    PubMed  Google Scholar 

  • Lillie, R. S. (1925) Factors affecting transmission and recovery in the passive iron nerve model.Journal of General Physiology 7, 473–507.

    Google Scholar 

  • Livingston, R. B., Pfenninger, K., Moor, H. &Akert, K. (1973) Specialized paranodal and interparanodal glial-axonal junctions in the peripheral and central nervous system: A freeze-etching study.Brain Research 58, 1–24.

    PubMed  Google Scholar 

  • Müller-Mohnssen, H., Tippe, A., Hillenkamp, F. &Unsöld, E. (1974) Is the rise of the action potential at the Ranvier node controlled by a paranodal organ?Naturwissenshaften 61, 369–70.

    Google Scholar 

  • Nageotte, J. (1910) Note sur le mécanisme de la formation des réseaux artifíciels dans la gaine de myéline.Comptes rendus des séances de la Société de Biologie 69, 628–31.

    Google Scholar 

  • Nemiloff, A. (1908) Einige Beobachtungen über den bau des Nervengewebes bei Ganoiden und Knochen-fischen. II. Bau der Nervenfasern.Archive für Mikroskopische Anatomie 72, 575–606.

    Google Scholar 

  • Newton, C., Bangborn, W., Nir, S. &Papahadjopoulos, D. (1978) Specificity of Ca2+ and Mg2+ binding to phosphatidylserine vesicles and resultant phase changes of bilayer membrane structure.Biochimica et Biophysica Acta 506, 281–7.

    PubMed  Google Scholar 

  • Nonner, W., Rojas, E. &Stämpfli, R. (1975) Gating currents in the node of Ranvier: Voltage and time dependence.Philosophical Transactions of the Royal Society, Series B 270, 483–92.

    Google Scholar 

  • Offner, F. F. (1972) The excitable membrane: A physiochemical model.Biophysical Journal 12, 1583–29.

    PubMed  Google Scholar 

  • Oschman, J. L. &Wall, B. J. (1972) Calcium binding to intestinal membranes.Journal of Cell Biology 55, 58–73.

    PubMed  Google Scholar 

  • Oschman, J. L., Hall, T. A., Peters, P. D. &Wall, B. J. (1974) Association of calcium with membranes of squid giant axon.Journal of Cell Biology 61, 156–63.

    Google Scholar 

  • Peters, A. (1966) The node of Ranvier in the central nervous system.Quarterly Journal of Experimental Physiology and Cognate Medical Sciences 51, 229–36.

    PubMed  Google Scholar 

  • Przyborowski, J. &Wilenski, H. (1939) Homogeneity of results in testing samples from Poisson series, with an application to testing clover seed for fodder.Biometrika 31, 313–23.

    Google Scholar 

  • Ranvier, L. A. (1871) Contributions à l'histologie et à la physiologie des nerfs périphérique.Comptes rendus hebdomadaire des séances de l'Académie des Sciences 73, 1168–71.

    Google Scholar 

  • Ranvier, L. A. (1878)Leçons sur l'Histologie du Système Nerveux. Vol. 2, pp. 352, 380. Paris: Savy.

    Google Scholar 

  • Rick, R., Dörge, A. &Tippe, A. (1976) Elemental distribution of Na, P, Cl, and K in different structures of myelinated nerve ofRana esculenta.Experientia 32, 1018–9.

    PubMed  Google Scholar 

  • Ritchie, J. M. &Rogart, R. B. (1977) Density of sodium channels in mammalian myelinated nerve fibers and nature of the axonal membrane under the myelin sheath.Proceedings of the National Academy of Science (U.S.A.) 74, 211–5.

    Google Scholar 

  • Robertson, J. D. (1957a) The ultrastructure of the myelin sheath near nodes of Ranvier.Journal of Physiology 137, 8 (Proceedings).

    PubMed  Google Scholar 

  • Robertson, J. D. (1957b) The ultrastructure of nodes of Ranvier in frog nerve fibres.Journal of Physiology 137, 8 (Proceedings).

    PubMed  Google Scholar 

  • Robertson, J. D. (1959) Preliminary observations on the ultrastructure of nodes of Ranvier.Zeitschrift für Zellforschung und mikroskopische Anatomie 50, 553–60.

    Google Scholar 

  • Schnapp, B. &Mugnaini, E. (1975) The myelin sheath: Electron microscopic studies with thin sections and freeze-fracture. InGolgi Centennial Symposium: Perspectives in Neurobiology (edited bySantini, M.), pp. 209–233. New York: Raven Press.

    Google Scholar 

  • Schnapp, B., Peracchia, C. &Mugnaini, E. (1973) Freeze-fracture of Ranvier nodes.Journal of Cell Biology 59, 360a.

    Google Scholar 

  • Schnapp, B., Peracchia, C. &Mugnaini, E. (1976) The paranodal axoglial junction in the central nervous system studied with thin sections and freeze-fracture.Neuroscience 1, 181–90.

    PubMed  Google Scholar 

  • Simson, J. A. V. &Spicer, S. S. (1975) Selective subcellular localization of cations with variants of the potassium (pyro)antimonate technique.Journal of Histochemistry and Cytochemistry 23, 575–98.

    PubMed  Google Scholar 

  • Singer, M. &Salpeter, M. M. (1966) The transport of3H-l-histidine through the Schwann and myelin sheath into the axon, including an evaluation of myelin function.Journal of Morphology 120, 280–315.

    Google Scholar 

  • Staehelin, L. A. (1974) Structure and function of intercellular junctions.International Review of Cytology 39, 191–283.

    PubMed  Google Scholar 

  • Tasaki, I. &Mizuguchi, K. (1948) Response of single Ranvier nodes to electrical stimuli.Journal of Neurophysiology 11, 295–303.

    Google Scholar 

  • Tasaki, I. &Takeuchi, T. (1941) Der am Ranverischen Knoten entstehende Aktionsstrom und seine Bedeutung für die Erregungsleitung.Pflügers Archiv für die gesamte Physiologie des Menschen und der Tiere 244, 696–711.

    Google Scholar 

  • Tasaki, I. &Takeuchi, T. (1972) Weiters Studien über den Aktionsstrom der Markhaltigen Nervenfaser und über die Elektrosaltatorische übertragung des Nervenimpulses.Pflügers Archiv für die gesamte Physiologie des Menschen und der Tiere 245, 764–82.

    Google Scholar 

  • Tippe, A. &Müller-Mohnssen, H. (1975) Further experimental evidence for the synapse hypothesis of Na+ current activation and inactivation at the Ranvier node.Naturwissenschaften 62, 490–1.

    PubMed  Google Scholar 

  • Torack, R. M. &Lavalle, M. (1970) The specificity of the pyroantimonate technique to demonstrate sodium.Journal of Histochemistry and Cytochemistry 18, 635–47.

    PubMed  Google Scholar 

  • Trump, B. F., Berezesky, I. K., Pendergrass, R. E., Chang, S. H., Bulger, R. E. &Mergner, W. J. (1978) X-ray microanalysis of diffusible elements in scanning electron microscopy of biological thin sections. Studies of pathologically altered cells. InScanning Electron Microscopy (edited byBecker, R. P. andJohari, O.), Vol. II, pp. 1027–1049. O'Hare, Illinois: Scanning Electron Microscopy, Inc.

    Google Scholar 

  • Wiley, C. A. &Ellisman, M. H. (1980) Rows of dimeric-particles within the axolemma and juxtaposed particles within glia, incorporated into a new model for the paranodal glial-axonal junction at the node of Ranvier.Journal of Cell Biology 84 (in press).

  • Wood, J. G., Jean, D. H., Whitaker, J. N., McLaughlin, B. J. &Albers, R. W. (1977) Immunocytochemical localization of the sodium, potassium activated ATPase in knifefish brain.Journal of Neurocytology 6, 571–81.

    PubMed  Google Scholar 

  • Yarom, R. &Chandler, J. A. (1974) Electron probe microanalysis of skeletal muscle.Journal of Histochemistry and Cytochemistry 22, 147–154.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellisman, M.H., Friedman, P.L. & Hamilton, W.J. The localization of sodium and calcium to Schwann cell paranodal loops at nodes of Ranvier and of calcium to compact myelin. J Neurocytol 9, 185–205 (1980). https://doi.org/10.1007/BF01205157

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01205157

Keywords

Navigation