Skip to main content
Log in

Mast cell specific proteases in rat brain: changes in rats with experimental allergic encephalomyelitis

  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

Mast cell populations were identified within brain parenchyma by their specific proteases, using antibodies for immunohistochemistry and ELISAs, and riboprobes were developed for in situ hybridisation. Connective tissue mast cells expressing rat mast cell protease I (RMCPI) mRNA and immunoreactivity were observed in thalamus and showed no degranulation at 3, 8 and 13 days after induction of experimental allergic encephalomyelitis (EAE). Mucosal-like mast cells were clearly demonstrated in control rats by measuring RMCPII and by visualising cells expressing RMCPII mRNA and immunoreactivity. At day 13, but not 3 and 8 post immunisation, the number of RMCPII-expressing cells markedly increased in the EAE-induced group, mainly within brainstem and spinal cord close to inflammed blood vessels.

The markers of histaminergic neurons were marginally affected 13 days after immunisation and the increase of [3H] histamine synthesis elicited by the H3-receptor antagonist, thioperamide, was not modified in any region of the brain.

It is concluded that the cerebral RMCPII-expressing mast cells could play a role during EAE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aloe L, Levi-Montalcini R (1977) Mast cells increase in tissues of neonatal rats injected with the nerve growth factor. Brain Res 133: 358–366

    PubMed  Google Scholar 

  • Aloe L, De Simone R (1989) NGF primed spleen cells injected in brain of developing rats differentiate into mast cells. Int J Dev Neurosci 7: 565–573

    PubMed  Google Scholar 

  • Aloe L, Skaper SD, Leon A, Levi-Montalcini R (1994) Nerve growth factor and autoimmune diseases. Autoimmunity 19: 141–150

    PubMed  Google Scholar 

  • Arrang JM, Garbarg M, Lancelot JC, Lecomte JM, Pollard H, Robba M, Schunack W, Schwartz J-C (1987) Highly potent and selective ligands for histamine H3-receptors. Nature 327: 117–123

    PubMed  Google Scholar 

  • Baker D, Davison A (1991) Mechanisms of immune mediated demyelinating disease of the central nervous system. Neurochem Res 16: 1067–1072

    PubMed  Google Scholar 

  • Benfey PN, Yin FH, Leder P (1987) Cloning of the mast cell protease, RMCPII. Evidence for cell specific expressing and a multi-gene family. J Biol Chem 262: 5377–5384

    PubMed  Google Scholar 

  • Bø L, Olsson T, Nyland H, Krüger PG, Taule A, Mork S (1991) Mast cells in brains during experimental allergic encephalomyelitis in Lewis rats. J Neurol Sci 105: 135–142

    PubMed  Google Scholar 

  • Brenner T, Soffer D, Shalit M, Levi-Schaffer F (1994) Mast cells in experimental allergic encephalomyelitis: characterization, distribution in the CNS and in vitro activation by myelic basic protein and neuropeptides. J Neurol Sci 122: 210–213

    PubMed  Google Scholar 

  • De Simone R, Micera A, Tirassa P, Aloe L (1996) mRNA for NGF and p75 in the central nervous system of rats affected by experimental allergic encephalomyelitis. Neuropathol Appl Neurobiol 22: 54–59

    PubMed  Google Scholar 

  • Dietsch GN, Hinrichs DJ (1991) Mast cell proteases liberate stable encephalitogenic fragments from intact myelin. Cell Immunol 135: 541–548

    PubMed  Google Scholar 

  • Dijkstra CD, Polman CH, Berkenbosch F (1993) Multiple sclerosis: some possible therapeutic opportunities. Trends Pharmacol Sci 14: 124–129

    PubMed  Google Scholar 

  • Dimitriadou V, Lambracht-Hall M, Reichler J, Theoharides TC (1990) Histochemical and ultrastructural characteristics of rat brain perivascular mast cells stimulated with compound 48/80 and carbachol. Neurosci 39: 209–224

    Google Scholar 

  • Dimitriadou V, Rouleau A, Trung Tuong MD, Newlands GFJ, Miller HRP, Luffau G, Schwartz J-C, Garbarg M (1994) Functional relationship between mast cells and C- sensitive nerve fibers evidenced by histamine H3-receptor modulation in rat lung and spleen. Clin Sci 87: 151–163

    PubMed  Google Scholar 

  • Dimitriadou V, Rouleau A, Trung Tuong MD, Ligneau X, Newlands GFJ, Miller HRP, Schwartz J-C, Garbarg M (1996) Rat cerebral mast cells undergo phenotypic changes during development. Dev Brain Res 97: 29–41

    Google Scholar 

  • Dimitniadou V, Rouleau A, Trung Tuong MD, Newlands GFJ, Miller HRP, Luffau G, Schwartz JC, Garbarg M (1997) Functional relationships between sensozy nerve fibers and mast cells of dura mater in normal and inflammatory conditions. Neuroscience 77: 829–839

    PubMed  Google Scholar 

  • Dropp JJ (1972) Mast cells in the central nervous system of several rodents. Anat Rec 174: 227–238

    PubMed  Google Scholar 

  • Enerback L (1986) Mast cell heterogeneity: the evolution of the concept of a specific mucosal mast cell. In: Befus AD, Bienenstock J, Denburg JA (eds) Mast cell differentiation and heterogeneity. Raven Press, New York, pp 1–26

    Google Scholar 

  • Eng LF, Ghirnikar RS, Lee YL (1996) Minireview: Inflammation in EAE: role of chemokine (cytokine expression by resident and infiltrating cells). Neurochem Res 21: 511–525

    PubMed  Google Scholar 

  • Fabry Z, Raine CS, Hart MN (1994) Nervous tissue as an immune compartment: the dialect of the immune response in the CNS. Immunol Today 15: 218–224

    PubMed  Google Scholar 

  • Galli SJ (1990) Biology of disease. New insights into “the riddle of the mast cells”: microenvironmental regulation of mast cell development and phenotypic heterogeneity. Lab Invest 62: 5–33

    PubMed  Google Scholar 

  • Galli SJ (1993) New concepts about the mast cell. N Engl J Med 328: 257–265

    PubMed  Google Scholar 

  • Galli SJ, Gordon JR, Wershil BK (1991) Cytokine production by mast cells and basophils. Curr Biol Immunol 3: 865–873

    Google Scholar 

  • Garbarg M, Pollard H, Quach TT, Schwartz J-C (1983) Methods in brain histamine research. In: Parvez S, Nagatsu T, Nagatsu I, Parvez H (eds) Methods in biogenic amines research. Elsevier Science Publishers, Amsterdam, pp 623–662

    Google Scholar 

  • Garbarg M, Pollard H, Trung Tuong MD, Schwartz J-C, Gros C (1989a) Sensitive radioimmunoassays for histamine and tele-methylhistamine in the brain. J Neurochem 53: 1724–1730

    PubMed  Google Scholar 

  • Garbarg M, Trung Tuong MD, Gros C, Schwartz J-C (1989b) Effects of histamine H3- receptor ligands on various biochemical indices of histaminergic neuron activity in rat brain. Eur J Pharmacol 164: 1–11

    Google Scholar 

  • Gibson S, Miller HRP (1986) Mast cell subsets in the rat distinguished immunohistochemically by their content of serine proteases. Immunol 58: 101–104

    Google Scholar 

  • Glowinski J, Iversen L (1966) Regional studies of catecholamines in the rat brain. I. The disposition of3H-NE,3H-DA,3H-DOPA in various regions of the brain. J Neurochem 13: 655–669

    PubMed  Google Scholar 

  • Goldschmidt RC, Hough LB, Glick SD, Padawer J (1984) Mast cells in rat thalamus: nuclear localization, sex differences and left-right asymmetry. Brain Res 323: 209–217

    PubMed  Google Scholar 

  • Gross PM (1985) Multiple actions of histamine on cerebral blood vessels. In: Ganellin CR, Schwartz J-C (eds) Frontiers in histamine research. Pergamon Press, London, pp 341–352

    Google Scholar 

  • Honegger CG, Isler H (1984) Neurotransmitters, precursors and metabolites in spinal cord and brain of Lewis rats with EAE. In: Alvord EC, Kies MW, Suckling AJ (eds) Experimental allergic encephalomyelitis: a useful model for multiple sclerosis. Alan R Liss, New York, pp 131–138

    Google Scholar 

  • Huntley JF, MacKellar A, Newlands GFJ, Irvine J, Miller HRP (1990) Mapping of the rat mast cell granule proteinases RMCPI and II by enzyme linked immunosorbent assay and paired immunofluorescence. APMIS 98: 933–944

    PubMed  Google Scholar 

  • Huntley JF, MacKellar A, Miller HRP (1993) Altered expression of mast cell proteases in the rat. Quantitative and immunohistochemical analysis of the distribution of rat mast cell proteases I and II during helminth infection. APMIS 101: 953–962

    PubMed  Google Scholar 

  • Ibrahim MZM (1974) The mast cells of the mammalian central nervous system, part 1. Morphology, distribution and histochemistry. J Neurol Sci 21: 431–478

    Google Scholar 

  • Johnson D, Krenger W (1992) Interactions of mast cells with the nervous system. Recent advances. Neurochem Res 17: 939–951

    PubMed  Google Scholar 

  • Johnson D, Seeldrayers PA, Weiner HL (1988) The role of mast cells in demyelination. Myelin proteins are degraded by mast cell proteases and myelin basic protein and P2 can stimulate mast cell degranulation. Brain Res 444: 195–198

    PubMed  Google Scholar 

  • Kaliner MA, Metcalfe DD (1993) The mast cell in health and disease. In: Lenfant C (ed) Lung biology in health and disease, vol 62. Marcel Dekker, New York

    Google Scholar 

  • Kasugai T, Okada M, Morimoto M, Arizono N, Maeyama K, Yamada M, Tei H, Dohmae K, Onoue H, Newlands GFJ, Watanabe T, Nishimune Y, Miller HRP, Kitamura Y (1993) Infection of Nippostrongylus brasiliensis induces normal increase of basophils in mast cell-deficient Ws/Ws rats with a small deletion at the kinase domain of c-kit. Blood 81: 2521–2529

    PubMed  Google Scholar 

  • Kermode AG, Thompson AJ, Tofts P, Mac Manus DG, Kendall BE, Kingsley DPE, Moseley IF, Rudge P, McDonald WR (1990) Breakdown of the blood brain barrier precedes symptoms and other MRI signs of new lesions in multiple sclerosis. Pathogenetic and clinical implications. Brain 113: 1477–1489

    PubMed  Google Scholar 

  • Kitamura Y (1989) Heterogeneity of mast cells and phenotypic change between subpopulations. Annu Rev Immunol 7: 59–76

    PubMed  Google Scholar 

  • Krenger W, Honegger CG, Feurer C, Cammisuli S (1986) Changes of neurotransmitter systems in chronic relapsing experimental allergic encephalomyelitis in rat brain and spinal cord. J Neurochem 47: 1247–1254

    PubMed  Google Scholar 

  • Krüger PG (1974) Demonstration of mast cells in the albino rat brain. Experientia 30: 810–811

    PubMed  Google Scholar 

  • Krüger PG, Bø L, Myhr KM, Karlsen AE, Taule A, Nyland HI, Mørk SJ (1990) Mast cells in multiple sclerosis, a light and electron microscopical study of mast cells in multiple sclerosis emphasizing staining procedures. Acta Neurol Scand 81: 31–36

    PubMed  Google Scholar 

  • Lassmann H, Zimprich F, Rossler K, Vass K (1991) Inflammation in the nervous system. Basic mechanisms and immunological concepts. Rev Neurol (Paris) 147: 763–781

    Google Scholar 

  • Leon A, Buriani A, Dal Toso R, Fabris M, Romanello S, Aloe L, Levi-Montalcini R (1994) Mast cells synthetize, store and release nerve growth factor. Proc Natl Acad Sci USA 91: 3739–3743

    PubMed  Google Scholar 

  • Levi-Montalcini R, Dal Toso R, Delia Valle F, Skaper SD, Leon A (1995) Update of the NGF saga. J Neurol Sci 130: 119–127

    PubMed  Google Scholar 

  • Levi-Schaffer F, Riesel N, Soffer D, Abramsky O, Brenner T (1991) Mast cell activity in experimental allergic encephalomyelitis. Mol Chem Neuropathol 15: 173–184

    PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurements with the Folin phenol reagent. J Biol Chem 193: 265–275

    PubMed  Google Scholar 

  • Marshall JS, Stead RH, McSharry C, Nielsen L, Bienenstock J (1990) The role of mast cell degranulation products in mast cell hyperplasia. I. Mechanism of action of nerve growth factor. J Immunol 144: 1886–1892

    PubMed  Google Scholar 

  • Martin R, McFarland HF, Mc Farlin DE (1992) Immunological aspects of demyelinating diseases. Annu Rev Immunol 10: 153–187

    PubMed  Google Scholar 

  • Micera A, De Simone R, Aloe L (1995) Elevated levels of nerve growth factor in the thalamus and spinal cord of rats affected by experimental allergic encephalomyelitis. Arch Ital Biol 133: 131–142

    PubMed  Google Scholar 

  • Miller HRP, Huntley JF, Newlands GFJ, Irvine J (1990a) Granule chymases and the characterization of mast cell phenotype and function in rat and mouse. In: Schwartz LB (ed) Neutral proteases of mast cells. Monograph in allergy, vol 27. Karger, Basel, pp 1–30

    Google Scholar 

  • Miller HRP, Woodbury RG, Huntley JF, Newlands GFJ (1990b) Systemic release of mucosal mast cell protease in primed-rats challenged with Nippostrongylus brasiliensis. Immunology 49: 471–479

    Google Scholar 

  • Neumann I (1890) Über das Vorkommen der sogennanten “Mastzellen” bei pathologischen Veränderungen des Gehirns. Virchows Arch 122: 378–380

    Google Scholar 

  • Newlands GFJ, Huntley JF, Miller HRP (1984) Concomitant detection of mucosal mast cells and losinophils in the intestines of normal and nippostrongylus-immune rats. Histochemistry 81: 585–589

    PubMed  Google Scholar 

  • Olsson Y (1974) Mast cells in plaques of multiple sclerosis. Acta Neurol Scand 50: 611–618

    PubMed  Google Scholar 

  • Orr EL (1988a) Presence and distribution of nervous system associated mast cells that may modulate experimental autoimmune encephalomyelitis. Ann NY Acad Sci 540: 723–726

    PubMed  Google Scholar 

  • Orr EL (1988b) Nervous system associated mast cells: gatekeepers of neural and immune interactions. Drug Dev Res 15: 195–205

    Google Scholar 

  • Orr EL, Stanley NC (1989) Brain and spinal cord levels of histamine in Lewis rats with acute experimental autoimmune encephalomyelitis. J Neurochem 53: 111–118

    PubMed  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic Press, London

    Google Scholar 

  • Purcell WM, Atterwill CK (1995) Mast cells in neuroimmune function: neurotoxicological and neuropharmacological perspectives. Neurochem Res 20: 521–532

    PubMed  Google Scholar 

  • Raine CS (1984) Biology of disease. Analysis of autoimmune demyelination: its impact upon multiple sclerosis. Lab Invest 50: 608–635

    PubMed  Google Scholar 

  • Raine CS (1990) Demyelinating diseases. In: Davis RL, Robertson DM (eds) Textbook of neuropathology, 2nd edn. Williams and Wilkins, Baltimore, pp 535–620

    Google Scholar 

  • Raine CS, Traugott U (1984) Experimental autoimmune demyelination. Chronic relapsing models and their therapeutic implications for multiple sclerosis. Ann NY Acad Sci 436: 33–51

    PubMed  Google Scholar 

  • Rouleau A, Garbarg M, Schwartz J-C, Ruat M (1994) Molecular cloning of rat mast cell protease 1 and development of specific probes for its gene transcript. Biochem Biophys Res Commun 199: 593–602

    PubMed  Google Scholar 

  • Rozniecki JJ, Hauser SL, Stein M, Lincoln R, Theoharides TC (1995) Elevated mast cell tryptase in cerebrospinal fluid of multiple sclerosis patients. Ann Neurol 37: 63–66

    PubMed  Google Scholar 

  • Schwartz J-C, Arrang JM, Garbarg M, Moreau J, Pollard H (1989) A third histamine receptor subtype: pharmacology and functions. In: Galli SJ, Austen KF (eds) Mast cell and basophil differentiation and function in health and disease. Raven Press, New York, pp 285–294

    Google Scholar 

  • Schwartz J-C, Arrang JM, Garbarg M, Gulat-Marnay C, Pollard H (1990) Modulation of histamine synthesis and release in brain via presynaptic autoreceptor and heteroreceptors. Ann NY Acad Sci 604: 40–54

    PubMed  Google Scholar 

  • Scully JL, Otten U (1995) NGF: not just for neurons. Cell Biol Int 19: 459–469

    PubMed  Google Scholar 

  • Smith ME, Somera FP, Eng LF (1983) Immunocytochemical staining for glial fibrillary acidic protein and the metabolism of cytoskeletal proteins in experimental allergic encephalomyelitis. Brain Res 264: 241–253

    PubMed  Google Scholar 

  • Stanley NC, Jackson FL, Orr EL (1990) Attenuation of experimental autoimmune encephalomyelitis by compound 48/80 in Lewis rats. J Neuroimmunol 29: 223–228

    PubMed  Google Scholar 

  • Steinman L (1992) Multiple sclerosis and its animal models: the role of the major histocompatibility complex and the T cell receptor repertoire. Springer Semin Immunopathol 14: 79–93

    PubMed  Google Scholar 

  • Swieter M, Mergenhagen SE, Siraganian RP (1992) Microenvironmental factors that influence mast cell phenotype and function. Proc Soc Exp Biol Med 199: 22–23

    PubMed  Google Scholar 

  • Theoharides TC (1990) Mast cells: the immune gate to the brain. Life Sci 46: 607–617

    PubMed  Google Scholar 

  • Theoharides TC, Dimitriadou V, Letourneau R, Rozniecki JJ, Vliagoftis H, Boucher W (1993) Synergistic action of estradiol and myelin basic protein on mast cell secretion and brain myelin changes resembling early stages of demyelination. Neurosci 57: 861–871

    Google Scholar 

  • Toms R, Weiner HL, Johnson D (1990) Identification of IgE-positive cells and mast cells in frozen sections of multiple sclerosis brains. J Neuroimmunol 30: 169–177

    PubMed  Google Scholar 

  • Tuomisto L, Kilpelainen H, Riekkinen P (1983) Histamine and histamine N- methyltransferase in the CSF of patients with multiple sclerosis. Agents Actions 13: 255–257

    PubMed  Google Scholar 

  • Wahl M, Unterberg A, Baethmann A, Schilling L (1988) Reviews: Mediaters of blood brain barrier dysfunction and formation of vasogenic brain edema. J Cereb Blood Flow Metab 8: 321–634

    Google Scholar 

  • Weigle O (1980) Analysis of autoimmunity through experimental models of thyroiditis and allergic encephalomyelitis. Adv Immunol 30: 159–273

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rouleau, A., Dimitriadou, V., Trung Tuong, M.D. et al. Mast cell specific proteases in rat brain: changes in rats with experimental allergic encephalomyelitis. J. Neural Transmission 104, 399–417 (1997). https://doi.org/10.1007/BF01277659

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01277659

Keywords

Navigation