Skip to main content
Log in

Immunogold localization of a developmentally regulated, tapetal-specific, 15 kDa lily anther protein

  • Original Papers
  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

We have confirmed that the LLA-15 polypeptide ofLilium longiflorum is (a) tapetum specific with some expression possible in the adjacent middle layer cells and (b) relatively abundant as evidenced by the high density of gold particles localized to the tapetal cells. We have established that the protein is cytoplasmic and not associated with organelles, membranes, extracellular matrix or wall. We also report an amino acid composition of the molecule and a partial sequence which bears no resemblance to any protein yet described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BSA:

bovine serum albumin

PMSF:

phenyl methyl sulfonyl fluoride

References

  • Aguirre PJ, Smith AG (1993) Molecular characterization of a gene encoding a cysteine-rich protein preferentially expressed in anthers ofLycopersicon esculentum. Plant Mol Biol 23: 477–487

    Google Scholar 

  • Altschul SF, Gish W, Miller W, Mayers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410

    Google Scholar 

  • Bucciaglia PA, Smith AG (1994) Cloning and characterization ofTag 1, a tobacco anther β-1,3-glucanase expressed during tetrad dissolution. Plant Mol Biol 24: 903–914

    Google Scholar 

  • Burnette WN (1981) Western blotting: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112: 195–203

    Google Scholar 

  • Capaldi RA, Vanderkooi G (1972) The low polarity of many membrane proteins. Proc Nat Acad Sci USA 69: 930–932

    Google Scholar 

  • Chen R, Aguirre PJ, Smith AG (1994) Characterization of an anther- and tapetum-specific gene encoding a glycine-rich protein from tomato. J Plant Physiol 143: 651–658

    Google Scholar 

  • Davis GL (1966) Systematic embryology of the angiosperms. Wiley, New York

    Google Scholar 

  • De Block M, Debrouwer D (1993) Engineered fertility control in transgenicBrassica napus L.: histochemical analysis of anther development. Planta 189: 218–225

    Google Scholar 

  • Delvallee I, Dumas C (1988) Anther development inZea mays: changes in protein, peroxidase, and esterase patterns. J Plant Physiol 132: 210–217

    Google Scholar 

  • Dickinson HG, Sheldon JM (1990) The cell biological basis of exine formation inLilium sp. In: Proceedings of the VII Palynology Symposium APLE. University of Granada, CSIC, Granada, pp 17–29

    Google Scholar 

  • Erickson RO (1948) Cytological and growth correlations in the flower bud and anther ofLilium longiflorum. Amer J Bot 35: 729–739

    Google Scholar 

  • Faye L, Greenwood JS, Herman EM, Sturm A, Crispeels MJ (1988) Transport and posttranslational processing of the vacuolar enzyme a-mannosidase in jack-bean cotyledons. Planta 174: 271–282

    Google Scholar 

  • Gould KS, Lord EM (1988) Growth of anthers inLilium longiflorum. A kinematic analysis. Planta 173: 161–171

    Google Scholar 

  • Herich R, Lux A (1984) Electron microscopic study of tapetal cell nuclei degradation ofLilium henryi. Physiol Plant 20: 1–5

    Google Scholar 

  • Herman EM (1988) Immunocytochemical localization of macromolecules with the electron microscope. Annu Rev Plant Physiol 39: 139–155

    Google Scholar 

  • Heslop-Harrison J (1968) Tapetal origin of pollen coat substances inLilium. New Phytol 67: 779–786

    Google Scholar 

  • Hird DL, Worrall D, Hodge R, Smartt S, Paul W, Scott R (1993) The anther-specific protein encoded by theBrassica napus andArabidopsis thaliana A6 gene displays similarity to β-1,3-glucanases. Plant J 4: 1023–1033

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685

    Google Scholar 

  • Johri BM (ed) (1984) Embryology of angiosperms. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Matsudaira P (1987) Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem 262: 10035–10038

    Google Scholar 

  • Pacini E (1990) Tapetum and microspore function. In: Blackmore S, Knox RB (eds) Microspores: evolution and ontogeny. Academic Press, New York, pp 213–237

    Google Scholar 

  • —, Franchi GG (1991) Diversification and evolution of the tapetum. In: Blackmore S, Barnes SH (eds) Pollen and spores — patterns of diversification. Clarendon, Oxford, pp 301–316

    Google Scholar 

  • — — (1993) Role of the tapetum in pollen and spore dispersal. Plant Syst Evol [Suppl] 7: 1–11

    Google Scholar 

  • Paul W, Hodge R, Smartt S, Draper J, Scott R (1992) The isolation and characterisation of the tapetum-specificArabidopsis thaliana A9 gene. Plant Mol Biol 19: 611–622

    Google Scholar 

  • Pfeiffer NE (1935) Development of the floral axis and new bud in imported Easter lilies. Contrib Boyce Thompson Inst 7: 311–321

    Google Scholar 

  • Reznickova SA, Willemse MTM (1980) Formation of pollen in the anther ofLilium. II. The function of surrounding tissues in the formation of pollen and pollen wall. Acta Bot Neerl 29: 141–156

    Google Scholar 

  • Roberts MR, Foster GD, Blundell RP, Robinson SW, Kumar A, Draper J, Scott R (1993) Gametophytic and sporophytic expression of an anther-specificArabidopsis thaliana gene. Plant J 3: 111–120

    Google Scholar 

  • Schägger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166: 368–379

    Google Scholar 

  • Smith AG, Gasser CS, Budelier KA, Fraley RT (1990) Identification and characterization of stamen- and tapetum-specific genes from tomato. Mol Gen Genet 222: 9–16

    Google Scholar 

  • Vergne P, Dumas C (1988) Isolation of viable wheat male gametophytes of different stages of development and variations in their protein patterns. Plant Physiol 88: 969–972

    Google Scholar 

  • Wang CS, Walling LL, Eckard KJ, Lord EM (1992a) Patterns of protein accumulation in developing anthers ofLilium longiflorum correlate with histological events. Amer J Bot 79: 118–127

    Google Scholar 

  • — — — — (1992b) Immunological characterization of a tapetal protein in developing anthers ofLilium longiflorum. Plant Physiol 99: 822–829

    Google Scholar 

  • — —, Gu YQ, Ware CF, Lord EM (1994) Two classes of proteins and mRNAs inLilium longiflorum L. identified by human vitronectin probes. Plant Physiol 104: 711–717

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balsamo, R.A., Wang, J.L., Eckard, K.J. et al. Immunogold localization of a developmentally regulated, tapetal-specific, 15 kDa lily anther protein. Protoplasma 189, 17–25 (1995). https://doi.org/10.1007/BF01280288

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01280288

Keywords

Navigation