Skip to main content
Log in

Ultrastructural ontogeny of leaf cavity trichomes inAzolla implies a functional role in metabolite exchange

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Anabaena azollae is associated with two types of multicellular epidermal trichomes inAzolla leaf cavities, the simple and branched hairs. The observation of transfer cell ultrastructure in some hair cells led to speculation that the cavity hairs might participate in metabolite exchange between the symbionts. The developmental ontogeny of cavity trichomes is described here, using transmission electron microscopy, with a goal of improving our understanding of possible functions of these structures in the symbiosis. The observations have established that all cells of simple and branched hairs develop the structural characteristics of transfer cells, but not simultaneously. Rather, there is an acropetal succession of transfer cell ultrastructure beginning in terminal cells, moving to body cells where present, and ending in stalk cells. The transfer cell stage is followed immediately by senescence in all hair cells. The timing of transfer cell differentiation, considered together with information from other studies, suggests that branched hairs may be involved in exchange of fixed nitrogen between the symbionts, while simple hairs may participate in exchange of fixed carbon fromAzolla toAnabaena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnabas, A. D., Butler, V., Steinke, T. D., 1977:Zostera capensis Setchell. I. Observations of the fine structure of the leaf epidermis. Z. Pflanzenphysiol.85, 417–427.

    Google Scholar 

  • Briarty, L. G., 1978: The development of root nodule xylem transfer cells inTrifolium repens. J. exp. Bot.29, 735–747.

    Google Scholar 

  • Calvert, H. E., Peters, G. A., 1981: TheAzolla-Anabaena azollae relationship. IX. Morphological analysis of leaf cavity hair populations. New Phytol.89, 327–335.

    Google Scholar 

  • —,Perkins, S. K., Peters, G. A., 1983: Sporocarp structure in the heterosporous water fernAzolla mexicana Presl. Scanning Electron Microsc.III, 1499–1510.

    Google Scholar 

  • Cronshaw, J., 1981: Phloem structure and function. Ann. Rev. Plant Physiol.32, 465–484.

    Google Scholar 

  • Duckett, J. G., Toth, R., Soni, S. L., 1975: An ultrastructural study of theAzolla, Anabaena azollae relationship. New Phytol.75, 111–118.

    Google Scholar 

  • Fahn, A., 1979: Secretory structures in plants. Academic Press: London.

    Google Scholar 

  • —,Benouaiche, P., 1979: Ultrastructure development and secretion in the nectary of bananaMusa paradisiaca var.sapientum flowers. Ann. Bot. (Lond.)44, 85–94.

    Google Scholar 

  • Fineran, B. A., 1980: Ontogeny of external glands in the bladderwortUtricularia monanthos. Protoplasma105, 9–25.

    Google Scholar 

  • —,Lee, M. S, L., 1975: Organization of quadrified and bifid hairs in the trap ofUtricularia monanthos. Protoplasma84, 43–70.

    Google Scholar 

  • Gunning, B. E. S., Pate, J. S., 1969: “Transfer cells” plant cells with wall ingrowths, specialized in relation to short distance transport of solutes—their occurrence, structure, and development. Protoplasma68, 107–133.

    Google Scholar 

  • Heslop-Harrison, Y., Knox, R. B., 1971: A cytochemical study of the leaf-gland enzymes of insectivorous plants of the genusPinguicula. Planta96, 183–211.

    Google Scholar 

  • Hill, D. J., 1975: The pattern of development ofAnabaena in theAzolla-Anabaena symbiosis. Planta133, 237–242.

    Google Scholar 

  • Jones, M. G. K., Northcote, D. H., 1972: Multinucleate transfer cells induced inColeus roots by the root-knot nematode,Meloidogyne arenaria. Protoplasma75, 381–395.

    Google Scholar 

  • Kaplan, D., Peters, G. A., 1981: TheAzolla-Anabaena azollae relationship. X. 15 N2 fixation and transport in main stem axes. New Phytol.89, 337–346.

    Google Scholar 

  • Morrison, I. N., O'Brien, T. P., Kuo, J., 1978: Initial cellularization of the aleurone cells in the ventral region of the developing wheat grain. Planta141, 19–30.

    Google Scholar 

  • Pate, J. S., Gunning, B. E. S., 1972: Transfer cells. Ann. Rev. Plant Physiol.23, 173–196.

    Google Scholar 

  • Peters, G. A., 1975: TheAzolla-Anabaena azollae relationship. III. Studies of metabolic capabilities and a further characterization of the symbiont. Arch. Microbiol.103, 113–122.

    Google Scholar 

  • —,Calvert, H. E., 1983: TheAzolla-Anabaena azollae symbiosis. In: Algal symbiosis (Goff, L. J., ed.), pp. 109–145. New York: Cambridge University Press.

    Google Scholar 

  • —,Mayne, B. C., 1974: TheAzolla, Anabaena azollae relationship. I. Initial characterization of the association. Plant Physiol.53, 813–819.

    Google Scholar 

  • —,Toia, Jr., R. E., Raveed, D., Levine, N. J., 1978: TheAzolla-Anabaena azollae relationship. VI. Morphological aspects of the association. New Phytol.80, 583–593.

    Google Scholar 

  • —,Ray, T. B., Mayne, B. C., Toia, Jr., R. E., 1980:Azolla-Anabaena association: morphological and physiological studies. In: Nitrogen fixation, Vol. 2 (Newton, W. E., Orme-Johnson, W. H., eds.), pp. 293–309. Baltimore: University Park Press.

    Google Scholar 

  • —,Toia, Jr., R. E., Evans, W. R., Crist, D. K., Mayne, B. C., Poole, R. E., 1980: Characterization and comparisons of five N2-fixingAzolla-Anabaena associations. I. Optimization of growth conditions for biomass increase and N content in a controlled environment. Plant Cell Environ.3, 261–269.

    Google Scholar 

  • —,Kaplan, D., Meeks, J. C., Buzby, K. M., Marsh, B. H., Corbin, J. L., 1985: Aspects of nitrogen and carbon interchange in theAzolla-Anabaena symbiosis. In: Nitrogen fixation and CO2 metabolism (Ludden, P. L., Burris, J. E., eds.), pp. 213–222. New York: Elsevier.

    Google Scholar 

  • Ray, T. B., Peters, G. A., Toia, Jr., R. T., Mayne, B. C., 1978:Azolla-Anabaena relationship. VII. Distribution of ammonia-assimilating enzymes, protein, and chlorophyll between host and symbiont. Plant Physiol.62, 463–467.

    Google Scholar 

  • —,Mayne, B. C., Toia, Jr., R. T., Peters, G. A., 1979:Azolla-Anabaena relationship. VIII. Photosynthetic characterization of the association and individual partners. Plant Physiol.64, 791–795.

    Google Scholar 

  • Reynolds, E. S., 1963: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol.17, 208–213.

    Google Scholar 

  • Schnepf, E., 1960: Zur Feinstructur der Drüsen vonDrosophyllum lusitanicum. Planta54, 641–675.

    Google Scholar 

  • —, 1961: Licht- und elektronenmikroskopische Beobachtungen an Insektivorendrüsen über die Sekretion des Fangschleims. Flora151, 73–87.

    Google Scholar 

  • —, 1974: Gland cells. In: Dynamic aspects of plant ultrastructure (Robards, A. W., ed.), pp. 331–357. Maidenhead, UK: McGraw-Hill.

    Google Scholar 

  • —,Pross, E., 1976: Differentiation and redifferentiation of a transfer cell: Development of sepal nectaries ofAloe andGasteria. Protoplasma89, 105–115.

    Google Scholar 

  • Smith, G. M., 1955: Cryptogamic botany, Vol. 2, 2nd ed. New York: McGraw-Hill.

    Google Scholar 

  • Spurr, A. R., 1969: A low viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res.26, 31–43.

    Google Scholar 

  • Wiencke, C., Schulz, D., 1977: The development of transfer cells in the haustorium of theFunaria hygrometrica sporophyte. Bryoph. Biblio.13, 147–167.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contribution no. 869 from the Battelle-C. F. Kettering Research Laboratory.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calvert, H.E., Pence, M.K. & Peters, G.A. Ultrastructural ontogeny of leaf cavity trichomes inAzolla implies a functional role in metabolite exchange. Protoplasma 129, 10–27 (1985). https://doi.org/10.1007/BF01282301

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01282301

Keywords

Navigation