Skip to main content
Log in

How hyphae grow: Morphogenesis explained?

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Apical growth of fungal hyphae represents a relatively simple instance of cellular morphogenesis. Thanks to the polarized transport and exocytosis of precursor vesicles, new cell wall and plasma membrane are continuously deposited at the hyphal apex; the question is how the characteristic shape of tube and tapered tip comes about. Recent experiments lend support to a model whose central feature is a mobile vesicle supply center corresponding to the Spitzenkörper (apical body) visible in growing hyphae. Shapes predicted by the model agree remarkably well with those of actual hyphae. Nevertheless, critical examination of the model's premises suggests that it requires extension so as to incorporate both a driving force for expansion and a gradient of cell wall plasticity. I propose that a mobile vesicle supply center may be one, but only one, of a range of physiological devices employed by tip-growing organisms to localize the exocytosis of precursor vesicles. Apical growth should ensue whenever the loci of exocytosis advance vectorially, and nascent cell wall expands in a graded manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

VSC:

vesicle supply center

SPK:

Spitzenkörper

References

  • Bartnicki-Garcia S, Lippman F (1969) Fungal morphogenesis: cell wall construction inMucor rouxii. Science 165: 302–308

    Google Scholar 

  • —, Hergert F, Gierz G (1989) Computer simulation of fungal morphogenesis and the mathematical basis of hyphal (tip) growth. Protoplasma 153: 46–57

    Google Scholar 

  • — — — (1990) A novel computer model for generating cell shape: application to fungal morphogenesis. In: Kuhn PJ, Trinci APJ, Jung MJ, Goosey MW, Copping LGA (eds) Biochemistry of cell walls amd membranes of fungi. Springer, Berlin Heidelberg New York Tokyo, pp 43–60

    Google Scholar 

  • —, Bartnicki DD, Gierz G (1995a) Determinants of fungal cell wall morphology: the vesicle supply center. Can J Bot 73 Suppl 1: S372-S378

    Google Scholar 

  • — — —, Löpez-Franco R, Bracker CE (1995b) Evidence that Spitzenkörper behavior determines the shape of a fungal hypha: a test of the hyphoid model. Exp Mycol 19: 153–159

    Google Scholar 

  • Bartnik E, Sievers A (1988) In-vivo observations on a spherical aggregate of endoplasmic reticulum and of Golgi vesicles in the tip of fast-growingChara rhizoids. Planta 176: 1–9

    Google Scholar 

  • Bourett TJ, Howard RJ (1991) Ultrastructural immunolocalization of actin in a fungus. Protoplasma 163: 199–202

    Google Scholar 

  • Brawley SH, Robinson KR (1985) Cytochalasin treatment disrupts the endogenous currents associated with cell polarization in fucoid zygotes: studies of the role of F actin in embryogenesis. J Cell Biol 100: 1173–1184

    Google Scholar 

  • Brière C, Goodwin BC (1988) Geometry and dynamics of tip morphogenesis inAcetabularia. J Theor Biol 131: 461–475

    Google Scholar 

  • Cid VJ, Duràn A, del Rey F, Snyder MP, Nombela C, Sanchez M (1995) Molecular basis of cell integrity and morphogenesis inSaccharomyces cervisiae. Microbiol Rev 59: 345–386

    Google Scholar 

  • Collinge AJ, Trinci APJ (1974) Hyphal tips of wild-type and spreading colonial mutants ofNeurospora crassa. Arch Microbiol 99: 353–368

    Google Scholar 

  • Condeelis J (1993) Life at the leading edge: the formation of cell protrusions. Annu Rev Cell Biol 9: 411–444

    Google Scholar 

  • Drubin DG, Nelson WJ (1996) Origins of cell polarity. Cell 84: 335–344

    Google Scholar 

  • Feijò JA, Malhò R, Obermeyer G (1995) Ion dynamics and its possible role during in vitro pollen germination and tube growth. Protoplasma 187: 155–167

    Google Scholar 

  • Girbardt M (1969) Die Ultrastruktur der Apikalregion von Pilzhyphen. Protoplasma 67: 413–441

    Google Scholar 

  • Gooday GW (1971) An autoradiographic study of hyphal growth of some fungi. J Gen Microbiol 67: 125–133

    Google Scholar 

  • — (1995) The dynamics of hyphal growth. Mycol Res 99: 385–394

    Google Scholar 

  • Goodwin BC (1986) What are the causes of morphogenesis? Bio Essays 3: 32–36

    Google Scholar 

  • —, Brière C (1992) A mathematical model of cytoskeletal dynamics and morphogenesis inAcetabularia. In: Menzel D (ed) The cytoskeleton of the algae. CRC Press, Boca Raton, pp 219–238

    Google Scholar 

  • —, Trainor LEH (1985) Tip and whorl morphogenesis inAcetabularia by calcium-regulated strain fields. J Theor Biol 117: 79–106

    Google Scholar 

  • Gow NAR, Gadd GM (1995) The growing fungus. Chapman and Hall, London

    Google Scholar 

  • Green PB (1969) Cell morphogenesis. Annu Rev Plant Physiol 20: 365–394

    Google Scholar 

  • — (1987) Inheritance of pattern: analysis from phenotype to gene. Am Zool 27: 657–673

    Google Scholar 

  • Grove SN, Bracker CE (1970) Protoplasmic organization of hyphal tips among fungi: vesicles and Spitzenkörper. J Bacteriol 104: 989–1009

    Google Scholar 

  • Harold FM (1990) To shape a cell: an inquiry into the causes of morphogenesis of microorganisms. Microbiol Rev 54: 381–431

    Google Scholar 

  • — (1994) Ionic and electrical dimensions of hyphal growth. In: Wessels JGH, Meinhardt F (eds) The Mycota, vol 1. Springer, Berlin Heidelberg New York Tokyo, pp 89–109

    Google Scholar 

  • —, (1995) From morphogenes to morphogenesis. Microbiology 141: 2765–2778

    Google Scholar 

  • —, Harold RL, Money NP (1995) What forces drive cell wall expansion? Can J Bot 73 Suppl 1: S379-S383

    Google Scholar 

  • Harold RL, Money NP, Harold FM (1996) Growth and morphogenesis inSaprolegnia ferax: is turgor required? Protoplasma 191: 105–114

    Google Scholar 

  • Heath IB (1990) Tip growth in plant and fungal cells. Academic Press, San Diego

    Google Scholar 

  • —, Kaminskyj SGW (1989) The organization of tip-growth-related organelles and microtubules revealed by quantitative analysis of freeze-substituted oomycete hyphae. J Cell Sci 93: 41–52

    Google Scholar 

  • —, van Rensburg EJ (1996) Critical evaluation of the VSC model for tip growth. Mycoscience 37: 1–10

    Google Scholar 

  • —, Rethoret K, Arsenault AL, Ottensmeyer FP (1985) Improved preservation of the form and contents of wall vesicles and the Golgi apparatus in freeze substituted hyphae ofSaprolegnia. Protoplasma 128: 81–93

    Google Scholar 

  • Howard RJ (1981) Ultrastructural analysis of hyphal tip cell growth in fungi: Spitzenkörper, cytoskeleton and endomembranes after freeze substitution. J Cell Sci 48: 89–103

    Google Scholar 

  • —, Aist JR (1979) Cytoplasmic microtubules and fungal morphogenesis: ultrastructural effects of methyl benzimidazole-2yl carbamate determined by freeze-substitution of hyphal tip cells. J Cell Biol 87: 55–64

    Google Scholar 

  • Jackson SL, Heath IB (1993) Roles of calcium ions in hyphal tip growth. Microbiol Rev 57: 367–382

    Google Scholar 

  • Kaminskyj SGW, Heath IB (1996) Studies onSaprolegnia ferax suggest the general importance of the cytoplasm in determining hyphal morphology. Mycologia 88: 20–37

    Google Scholar 

  • Kiss JZ, Staehelin LA (1993) Structural polarity in theChara rhizoid: a reevaluation. Am J Bot 80: 273–282

    Google Scholar 

  • Koch AL (1985) How bacteria grow and divide in spite of internal hydrostatic pressure. Can J Microbiol 31: 1071–1083

    Google Scholar 

  • — (1992) Differences in the formation of poles ofEnterococcus andBacillus. J Theor Biol 154: 205–217

    Google Scholar 

  • — (1994) The problem of hyphal growth in streptomycetes and fungi. J Theor Biol 171: 137–150

    Google Scholar 

  • - (1995) Bacterial growth and form. Chapman and Hall, New York

  • Kröpf DL (1992) Establishment and expression of cellular polarity in fucoid zygotes. Microbiol Revs 56: 316–339

    Google Scholar 

  • Lancelle SA, Hepler PK (1992) Ultrastructure of freeze-substituted pollen tubes ofLilium longiflorum. Protoplasma 167: 215–230

    Google Scholar 

  • Lee J, Ishibara A, Jacobson K (1993) How do cells move along surfaces? Trends Cell Biol 3: 366–370

    Google Scholar 

  • Levina NN, Lew RL, Heath IB (1994) Cytoskeletal regulation of ion channel distribution in the tip-growing organismSaprolegnia ferax. J Cell Sci 107: 127–134

    Google Scholar 

  • Lòpez-Franco R, Bracker CE (1996) Diversity and dynamics of the Spitzenkörper in growing hyphal tips of higher fungi. Protoplasma 195: 90–111

    Google Scholar 

  • —, Bartnicki-Garcia S, Bracker CE (1994) Pulsed growth in fungal hyphal tips. Proc Natl Acad Sci USA 91: 12228–12232

    Google Scholar 

  • —, Howard RJ, Bracker CE (1995) Satellite Spitzenkörper in growing hyphal tips. Protoplasma 188: 85–103

    Google Scholar 

  • Loukin S, Kung C (1995) Manganese effectively supports yeast cellcycle progression in place of calcium. J Cell Biol 131: 1025–1037

    Google Scholar 

  • Malhò R, Read ND, Trewavas AJ, Pais MS (1995) Calcium channel activity during pollen tube growth and reorientation. Plant Cell 7: 1173–1184

    Google Scholar 

  • McClure WK, Park D, Robinson PM (1968) Apical organization in the somatic hyphae of fungi. J Gen Microbiol 50: 177–182

    Google Scholar 

  • Mitchison TJ, Cramer LP (1996) Actin-based cell motility and locomotion. Cell 84: 371–379

    Google Scholar 

  • Money NP (1994) Osmotic adjustment and the role of turgor in mycelial fungi. In: Wessels JGH, Meinhardt F (eds) The Mycota, vol 1. Springer, Berlin Heidelberg New York Tokyo, pp 67–86

    Google Scholar 

  • Harold FM (1993) Two water molds can grow without measurable turgor pressure. Planta 190: 426–430

    Google Scholar 

  • Pierson ES, Miller DD, Callaham DA, van Aken J, Hackett G, Hepler PK (1996) Tip-localized calcium entry fluctuates during pollen tube growth. Dev Biol 174: 160–173

    Google Scholar 

  • Popper KR (1972) Objective knowledge: an evolutionary approach. Clarendon, Oxford

    Google Scholar 

  • Roberson RW, Fuller MS (1988) Ultrastructural aspects of the hyphal tip ofSclerotium rolfsii preserved by freeze substitution. Protoplasma 146: 143–149

    Google Scholar 

  • — — (1990) Effects of the demethylase inhibitor, Cyproconazole, on hyphal cells ofSclerotium rolfsii. I. An electron microscope study. Exp Mycol 14: 124–135

    Google Scholar 

  • —, Vargas MM (1994) The tubulin cytoskeleton and its sites of nucleation in hyphal tips ofAllomyces macrogynus. Protoplasma 182: 19–31

    Google Scholar 

  • Schreurs WJA, Harold RL, Harold FM (1989) Chemotropism and branching as alternative responses ofAchlya bisexualis to amino acids. J Gen Microbiol 135: 2519–2528

    Google Scholar 

  • Shaw SL, Quatrano RS (1996) The role of targeted secretion in the establishment of cell polarity and the orientation of the division plane inFucus zygotes. Development 122: 2623–2630

    Google Scholar 

  • Steer M, Steer JM (1989) Pollen tube tip growth. New Phytol 111: 325–358

    Google Scholar 

  • Vargas MM, Aronson JM, Roberson RW (1993) The cytoplasmic organization of hyphal tip cells in the fungusAllomyces macrogynus. Protoplasma 176: 43–52

    Google Scholar 

  • Wessels JGH (1986) Cell wall synthesis in apical hyphal growth. Int Rev Cytol 104: 37–79

    Google Scholar 

  • — (1994) Developmental regulation of fungal cell wall formation. Annu Rev Phytopathol 32: 413–437

    Google Scholar 

  • —, Meinhardt F (eds) (1994) The Mycota, vol 1, growth differentiation and sexuality. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harold, F.M. How hyphae grow: Morphogenesis explained?. Protoplasma 197, 137–147 (1997). https://doi.org/10.1007/BF01288023

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01288023

Keywords

Navigation