Skip to main content
Log in

Pharmacological properties of cephalosporins

Pharmakologische Eigenschaften der Cephalosporine

  • Published:
Infection Aims and scope Submit manuscript

Summary

The cephalosporins differ in the substituents attached at the 3 and/or 7 positions of the molecule. Very schematically, substitution at C3 mainly modifies the overall pharmacokinetic properties whereas substitution at position 7 influences the antibacterial characteristics. When using the more common “generation” system for classification, three generations can be distinguished on the basis of their antibacterial spectrum, potency, and their stability to beta-lactamases. The first generation cephalosporins have similar antibacterial and pharmacokinetic characteristics. C3-esterified cephalosporins (e. g. cephalothin and cephapirin) are significantly metabolized. The so-called second generation cephalosporins exhibit only minor differences with respect to the pharmacokinetic properties in contrast to the third generation cephalosporins. The apparent volumes of distribution of most cephalosporins range between seven and 20 1, indicating that they mainly stay in the extracellular space. Plasma protein binding is variable from compound to compound. Generally, the major route of elimination of most cephalosporins is via the kidney except for cefoperazone and ceftriaxone which are both excreted to a large extent by the biliary route. With the exception of cefonicid, cefotetan and ceftriaxone, which have longer elimination half-lives (i.e. 4.5, 3.5 and around eight hours), all other cephalosporins have a half-life ranging from 0.5 to 2.5 hours. The pattern of adverse reactions is comparable for all the cephalosporins although there are slight differences in both the incidence and the type of reactions. The major categories of adverse reactions are gastrointestinal, dermatologic, hypersensitivity, haematologic, hepatic, renal as well as CNS effects. Alcohol intolerance (antabus-like effect) can occur when cephalosporins containing the NMTT moiety are administered concomitantly. Cephalosporins with either a NMTT or a MTD (methylthiadiazole) moiety are linked with hypoprothrombinaemias.

Zusammenfassung

Die Cephalosporine unterscheiden sich hinsichtlich der Substituenten in den Positionen 3 und 7 des Moleküls. Etwas vereinfacht dargestellt beeinflußt der Substituent in Position 3 überwiegend die pharmakokinetischen Eigenschaften und der Substituent in Position 7 die antibakteriellen Eigenschaften. Es gibt verschiedene Möglichkeiten, die heute verfügbaren Cephalosporine zu klassifizieren. Verwendet man die gebräuchliche Einteilung in Generationen, so lassen sich aufgrund des Wirkspektrums, der Wirkungsintensität sowie der Stabilität gegen Betalaktamasen drei Generationen unterscheiden. Die Vertreter der sog. ersten und zweiten Generation sind hinsichtlich der antibakteriellen und pharmakokinetischen Eigenschaften untereinander sehr ähnlich. Die Vertreter der sog. dritten Generation unterscheiden sich erheblich hinsichtlich ihrer pharmakokinetischen Eigenschaften. Die scheinbaren Verteilungsvolumina der meisten Cephalosporine liegen bei 7 bis 20 1. Dies ist ein Hinweis darauf, daß sie sich vor allem im Extrazellulärraum aufhalten. Im allgemeinen werden die Cephalosporine überwiegend renal ausgeschieden. Cefoperazon und Ceftriaxon werden auch in beachtlichem Umfang auf hepatobiliärem Weg ausgeschieden. Die Serumhalbwertszeiten der meisten Cephalosporine liegen in einem Bereich von 0,5 bis 2,5 Stunden, mit Ausnahme des Cefonicids, Cefotetans und Ceftriaxons, die längere Halbwertszeiten haben. Das Nebenwirkungsprofil der Cephalosporine ist für die einzelnen Substanzen sehr ähnlich. Einige Cephalosporine, die eine NMTT-Seitenkette in Position 3 besitzen, können Alkoholunverträglichkeitsreaktionen verursachen. Sowohl Cephalosporine mit einem NMTT- als auch mit einem MTD-(Methylthiadiazol-)Substituenten können durch Beeinflussung der Prothrombin-Biosythese Anlaß zu humoralen Blutgerinnungsstörungen sein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brogard, J. M., Comte, F. Pharmacokinetics of the new cephalosporins. In:Schönfeld, H. (ed.): Antibiotics and chemotherapy. Vol. 31, Pharmacokinetics II. S. Karger, Basel 1982, pp. 145–210.

    Google Scholar 

  2. Balant, L., Dayer, P., Auckenthaler, R. Clinical pharmacokinetics of the third generation cephalosporins. Clin. Pharmacokinet. 10 (1985) 101–143.

    Google Scholar 

  3. Anonymous Author: Mikrobiologie and Pharmakokinetik parenteraler Cephalosporine Brochure. Hoffmann-La Roche 1986, pp. 1–37.

  4. Anonymous Author: The aminothiazolyl methoxyimino cephalosporins. Cefotaxime, ceftizoxime and ceftriaxone. Brochure. Roche Laboratories, Nutley, New Jersey 1986, pp. 1–54.

  5. Various Authors Cephalosporine der 80er Jahre.Adam, D., Grobecker, H., Naber, K. G. (eds.): FAC (Fortschritte der Antimikrobiellen, Antineoplastischen Chemotherapie) Vol. 1-1, Futuramed Verlag, München 1982, pp. 1–283.

    Google Scholar 

  6. Adam, D., Christ, W. Antiinfektiöse Therapie. In:Forth, W., Henschler, W., Rummel, W. (eds.): Allgemeine und spezielle Pharmakologie und Toxikologie. 5. Aufl. Wissenschaftsverlag Mannheim, Wien 1987, pp. 580–715.

    Google Scholar 

  7. Neu, H. C. Thein vitro activity, human pharmacology, and clinical effectiveness of new β-lactam antibiotics. Ann. Rev. Pharmacol. Toxicol. 22 (1982) 599–642.

    Google Scholar 

  8. Christ, W. Entwicklungen und Trends auf dem Gebiet der Antibiotika/Chemotherapeutika. Die Offizin. Georg Thieme Verlag, Stuttgart, New York 1988, pp. 31–52.

    Google Scholar 

  9. Saltiel, E., Brogden, R. N. Cefonicid. A review of its antibacterial activity, pharmacological properties and therapeutic use. Drugs 32 (1986) 222–259.

    Google Scholar 

  10. Brogden, R. N., Carmine, A., Heel, R. C., Morley, P. A., Speight, T. M., Avery, G. S. Cefoperazone: A review of itsin vitro antimicrobial activity, pharmacological properties and therapeutic efficacy. Drugs 22 (1981) 423–460.

    Google Scholar 

  11. Brogden, R. N., Ward, A. Ceftriaxone. A reappraisal of its antibacterial activity and pharmacokinetic properties, and an update on its therapeutic use with particular reference to once-daily administration. Drugs 35 (1988) 604–645.

    Google Scholar 

  12. Landesman, S. H., Corrado, M. L., Shah, P. M., Armengaud, M., Barza, M., Cherubin, C. E. Past and current roles for cephalosporin antibiotics in treatment of meningitis. Emphasis on use in gram-negative bacillary meningitis. Am. J. Med. 71 (1981) 693–703.

    Google Scholar 

  13. Whitby, M., Finch, R. Bacterial meningitis. Rational selection and use of antibacterial drugs. Drugs 31 (1986) 266–278.

    Google Scholar 

  14. Carmine, A. A., Brogden, R. N., Heel, R. C., Speight, T. M., Avery, G. S. Cefotaxime. A review of its antibacterial activity, pharmacological properties and therapeutic use. Drugs 25 (1983) 223–289.

    Google Scholar 

  15. Reeves, D. S., White, L. O., Holt, H. A., Bahari, D., Bywater, M. J., Bax, R. P. Human metabolism of cefotaxime. J. Antimicrob. Chemother. 6 (Suppl. A) (1980) 93–101.

    Google Scholar 

  16. Gundert-Remy, U., Hildebrandt, R., Stiehl, A., Schlegel, P. Pharmacokinetics of ceftizoxime. Eur. J. Clin. Pharmacol. 28 (1985) 463–467.

    Google Scholar 

  17. Richards, D. M., Heel, R. C. Ceftizoxime. A review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs 29 (1985) 281–329.

    Google Scholar 

  18. Arbeitsgemeinschaft Arzneimittelsicherheit der Paul-Ehrlich-Gesellschaft für Chemotherapie e.V. Cephalosporine: Antibiotikainduzierte Hämostasestörung und Blutungsneigung. Dtsch. Äbl. 81 (1984) 3823–3824.

    Google Scholar 

  19. Bechtold, H., Andrassy, K. Vitamin K und medikamenteninduzierte Hypoprothrombinämie. Hämostaseologie 8 (1988) 8–17

    Google Scholar 

  20. Andrassy, K., Bechtold, H.: Blutgerinnungsstörungen unter Betalactamantibiotika Arzneimitteltherapie 3 (1985) 66–68.

  21. Shearer, M. J., Bechtold, H., Andrassy, K., Koderisch, J., McCarthy, P. T., Trenk, D., Jähnchen, E., Ritz, E. Mechanism of cephalosporin-induced hypoprothrombinemia: relation to cephalosporin side chain, vitamin K metabolism and vitamin K status. J. Clin. Pharmacol. 28 (1988) 88–95.

    Google Scholar 

  22. Foord, R. D. Cephaloridine, cephalothin and the kidney. J. Antimicrob. Chemother. 1 (Suppl.) (1975) 119–133.

    Google Scholar 

  23. Wachsmuth, E. D. Quantification of acute cephaloridine nephrotoxicity in rats: correlation of serum and 24 hour urine analyses with proximal tubule injuries. Toxicol. Appl. Pharmacol. 63 (1982) 429–445.

    Google Scholar 

  24. Tune, B. M., Fravert, D., Hsu, C.-Y. Oxidative and mitochondrial toxic effects of cephalosporin antibiotics in the kidney. A comparative study of cephaloridine and cephaloglycin. Biochem. Pharmacol. 38 (1989) 795–802.

    Google Scholar 

  25. Arbeitsgemeinschaft Arzneimittelsicherheit der Paul-Ehrlich-Gesellschaft für Chemotherapie e.V. Cephalosporine: Antibiotikainduzierte Hämostasestörung und Blutungsneigung. Dtsch. Äbl. 86 (1989) 492–493.

    Google Scholar 

  26. Campoli-Richards, D. M., Lackner, Th. E., Monk, J. P. Ceforanide. A review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs 34 (1987) 411–437.

    Google Scholar 

  27. Campoli-Richards, D. M., Todd., P. A. Cefmenoxime. A review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs 34 (1987) 188–221.

    Google Scholar 

  28. Weinstein, A. I. The cephalosporins: activity and clinical use. Drugs 19 (1980) 137–154.

    Google Scholar 

  29. Bergan, T. Pharmacokinetic properties of the cephalosporins. Drugs 34 (Suppl. 2) (1987) 89–104.

    Google Scholar 

  30. Todd, P. A., Brogden, R. N. Cefotaxime. An update of its pharmacology and therapeutic use. Drugs 40 (1990) 608–651.

    Google Scholar 

  31. Brogden, R. N., Campoli-Richards, D. M. Cefixime. A review of its antibacterial activity, pharmacokinetic properties and therapeutic potential. Drugs 38 (1989) 524–550.

    Google Scholar 

  32. Ward, A., Richards, D. M. Cefotetan. A review of its antibacterial activity, pharmakokinetic properties and therapeutic use. Drugs 30 (1985) 382–426 (version updated in May 1989, ADIS Press Ltd. 1989).

    Google Scholar 

  33. Carmine, A. A., Brogden, R. N., Heel, R. C., Romankiewicz, I. A., Speight, T. M., Avery, G. S. Moxalactam (Latamoxef). A review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs 26 (1983) 279–333.

    Google Scholar 

  34. Stoeckel, K. Pharmakokinetic parenteraler Cephalosporine in Prüfphase III (Cefmenoxim, Ceftazidim, Ceftizoxim, Cefotetan, Cefonicid, Ceforanid, Ceftriaxon). Cephalosporine der 80er Jahre. In:Adam, D., Grobecker, H., Naber, K. G. (eds.): FAC (Fortschritte der Antimikrobiellen und Antineoplastischen Chemotherapie) Vol. 1-1, Futuramed Verlag, München 1982, pp. 105–113.

    Google Scholar 

  35. Brogden, R. N., Ward, A. Ceftriaxone. A reappraisel of its antibacterial activity and pharmacokinetic properties, and an update on its therapeutic use with particular reference to once-daily administration. Drugs 35 (1988) 604–645.

    Google Scholar 

  36. Paap, C. M., Nahata, M. C. Clinical pharmacokinetics of antibacterial drugs in neonates. Clin. Pharmacokinet. 19 (1990) 280–318.

    Google Scholar 

  37. Hayton, W. L., Stoeckel, K. Biliary excretion of ceftriaxone. Eur. J. Clin. Pharmacol. 31 (1986) 123–124.

    Google Scholar 

  38. Hayton, W. L., Stoeckel, K. Age-associated changes in ceftriaxone pharmacokinetics. Clin. Pharmacokinet. 11 (1986) 76–86.

    Google Scholar 

  39. Dagrosa, E. E., Hajdu, P., Malerczyk, V., de Looze, S., Seeger, K., Grötsch, H. Dose linearity and other pharmacokinetics of cefodizime after single-dose intravenous administration. Clin. Therapeutics 10 (1987) 18–31.

    Google Scholar 

  40. Gundert-Remy, U., Christ, W., Kemmler, H.: Biliary excretion of antimicrobial agents. In:Siegers, C.-P., Watkins, I. B. (eds.): Biliary excretion of drugs and other chemicals. Progress in Pharmacology and Clinical Pharmacology Vol. 8/4, Gustav Fischer Verlag Stuttgart, New York (publication date: approx. end of 1991), pp. 360–381.

  41. Bergan, T. Comparative pharmakokinetics of cefazolin, cephalothin, cephacetril, and cephapirine after intravenous administration. Chemotherapy 23 (1977) 389–404.

    Google Scholar 

  42. Neu, H. C. Third generation cephalosporins: safety profiles after 10 years of clinical use. J. Clin. Pharmacol. 30 (1990) 396–403.

    Google Scholar 

  43. Brogard, I. M., Jehl, F., Willemin, B., Lamalle, A. M., Blickle, I. F., Monteil, H. Clinical pharmacokinetics of cefotiam. Clin. Pharmacokinet. 17 (1989) 163–174.

    Google Scholar 

  44. Shevchuk, Y. M., Conly, I. M. Antibiotic-associated hypoprothrombinemia: a review of prospective studies, 1966–1988. Rev. Infectious Dis. 12 (1990) 1109–1126.

    Google Scholar 

  45. Norrby, S. R. Side effects of cephalosporins. Drugs 34 (Suppl. 2) 1987: 105–120.

    Google Scholar 

  46. Richards, D. M., Brogden, R. N. Ceftazidime. A review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs 29 (1985) 105–161.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christ, W. Pharmacological properties of cephalosporins. Infection 19 (Suppl 5), S244–S252 (1991). https://doi.org/10.1007/BF01645535

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01645535

Keywords

Navigation