Skip to main content
Log in

Inflammatory intermediaries in inflammatory bowel disease

  • Review
  • Published:
International Journal of Colorectal Disease Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

5-ASA:

5-aminosalicylic acid

C:

complement-derived peptide

CD:

Crohn's disease

FMLP:

N-formylmethionyl-leucyl-phenylalanine

HETE:

hydroxyeicosatetraenoic acid

HPETE:

hydroxyperoxyeicosatetraenoic acid

IBD:

inflammatory bowel diseases

IL:

interleukin

LT:

leucotriene

NSAID:

nonsteroidal anti-inflammatory drug

PAF-acether:

platelet-activating factor

PG:

prostaglandin

ROS:

reactive oxygen species

TNF:

tumour necrosis factor

TX:

thromboxane

UC:

ulcerative colitis

References

  1. Kirsner JB, Shorter RG (1982) Recent developments in nonspecific inflammatory bowel disease. N Engl J Med 306:775–785, 837–848

    Google Scholar 

  2. Elson CO, Kagnoff MF, Fiocchi C, Befus AD, Targan S (1986) Intestinal immunity and inflammation: recent progress. Gastroenterology 91:746–768

    Google Scholar 

  3. Strober W, James SP (1986) The immunologic basis of inflammatory bowel disease. J Clin Immunol 6:415–432

    Google Scholar 

  4. Majno G (1985) Inflammatory mediators: where are they going? In: Higgs GA, Williams TH (eds) Inflammatory mediators. MacMillan, Basingstoke, pp 1–6

    Google Scholar 

  5. Vane JR (1972) Prostaglandins in the inflammatory response. In: Lepow IH, Ward PA (eds) Inflammation: mechanisms and control. Academic Press, New York, pp 261–279

    Google Scholar 

  6. Irvine RF (1982) How is the level of free arachidonic acid controlled in mammalian cells? Biochem J 204:3–16

    Google Scholar 

  7. Blackwell GJ, Flower RJ (1983) Inhibition of phospholipase. Br Med Bull 39:260–264

    Google Scholar 

  8. Samuelsson B, Goldyne M, Granström E, Hamberg M, Hammerström S, Malmsten C (1978) Prostaglandins and thromboxanes. Annu Rev Biochem 47:997–1029

    Google Scholar 

  9. Hammerström S (1983) Leukotrienes. Annu Rev Biochem 52:355–377

    Google Scholar 

  10. Borgeat P, Nadeau M, Salari H, Poubelle P, de Laclos BF (1985) Leukotrienes: biosynthesis, metabolism, and analysis. Adv Lipid Res 21:47–77

    Google Scholar 

  11. Majerus PW, Wilson DB, Conolly TM, Bross TE, Neufeld EJ (1985) Phosphoinositide turnover provides a link in stimulus-response coupling. Trends Biochem Sci 10:168–171

    Google Scholar 

  12. Needleman P, Turk J, Jakschik BA, Morrison AR, Lefkowith JB (1986) Arachidonic acid metabolism. Annu Rev Biochem 55:69–102

    Google Scholar 

  13. Lewis RA, Austen KF (1984) The biologically active leukotrienes. Biosynthesis, metabolism, receptors, functions, and pharmacology. J Clin Invest 73:889–897

    Google Scholar 

  14. Samuelsson B (1983) Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science 220:568–575

    Google Scholar 

  15. Weller PF, Lee CW, Foster DW, Corey EJ, Austen KF, Lewis RA (1983) Generation and metabolism of 5-lipoxygenase pathway leukotrienes by human eosinophils: predominant production of leukotriene C4 Proc Natl Acad Sci USA 80:7626–7630

    Google Scholar 

  16. Boughton-Smith NK, Whittle BJR (1988) The role of eicosanoids in animal models of inflammatory bowel disease. In: Goebell H, Peskar BM, Malchow H (eds) Inflammatory bowel diseases. Basic research and clinical implications. MTP Press Lancaster, pp 175–199

    Google Scholar 

  17. Brown JA, Zipser RD (1987) Prostaglandin regulation of colonic blood flow in rabbit colitis. Gastroenterology 92:54–59

    Google Scholar 

  18. Sharon P, Stenson WF (1985) Metabolism of arachidonic acid in acetic acid colitis in rats: similarity to human inflammatory bowel disease. Gastroenterology 88:55–63

    Google Scholar 

  19. Boughton-Smith NK, Whittle BJR (1985) Increased metabolism of arachidonic acid in an immune model of colitis in guinea pigs. Br J Pharmacol 86:439–446

    Google Scholar 

  20. Zipser RD, Nast CC, Lee M, Kao HW, Duke R (1987) In vivo production of leukotriene B4 and leukotriene C4 in rabbit colitis. Relationship to inflammation. Gastroenterology 92:33–39

    Google Scholar 

  21. Rask-Madsen J, Bukhave K (1984) The difficulties of establishing the pathophysiological role of prostaglandins in secretion. In: Skadhauge E, Heintze K (eds) Intestinal absorption and secretion. MTP Press, Lancaster, pp 453–468

    Google Scholar 

  22. Zipser RD, Laffi G (1985) Prostaglandins, thromboxanes and leukotrienes in clinical medicine. West J Med 143:485–497

    Google Scholar 

  23. Rigas B (1986) Eicosanoids and the gastrointestinal tract: promising but no verdict yet. Am J Gastroenterol 81:218–221

    Google Scholar 

  24. Gould SR (1975) Prostaglandins, ulcerative colitis, and sulphasalazine. Lancet ii:988

    Google Scholar 

  25. Sharon P, Ligumsky M, Rachmilewitz D, Zor U (1978) Role of prostaglandins in ulcerative colitis. Enhanced production during active disease and inhibition by sulfasalazine. Gastroenterology 75:638–640

    Google Scholar 

  26. Sharon P, Stenson WF (1984) Enhanced synthesis of leukotriene B4 by colonic mucosa in inflammatory bowel disease. Gastroenterology 86:453–460

    Google Scholar 

  27. Harris DW, Smith PR, Swan CHJ (1978) Determination of prostaglandin synthetase activity in rectal biopsy material and its significance in colonic disease. Gut 19:875–877

    Google Scholar 

  28. Ligumsky M, Karmeli F, Sharon P, Zor U, Cohen F, Rachmilewitz D (1981) Enhanced thromboxane A2 and prostacyclin production by cultured rectal mucosa in ulcerative colitis and its inhibition by steroids and sulfasalazine. Gastroenterology 81:444–449

    Google Scholar 

  29. Boughton-Smith NK, Hawkey CJ, Whittle BJR (1983) Biosynthesis of lipoxygenase and cyclo-oxygenase products from14C-arachidonic acid by human colonic mucosa. Gut 24:1176–1182

    Google Scholar 

  30. Peskar BM, Dreyling KW, Peskar BA, May B, Goebell H (1986) Enhanced formation of sulfidopeptide-leukotrienes in ulcerative colitis and Crohn's disease: inhibition by sulfasalazine and 5-aminosalicylic acid. Agents Actions 18:381–383

    Google Scholar 

  31. Rachmilewitz D, Ligumsky M, Haimowitz A, Treves AJ (1982) Prostanoid synthesis by cultured peripheral blood mononuclear cells in inflammatory diseases of the bowel. Gastroenterology 82:673–679

    Google Scholar 

  32. Zifroni A, Treves AJ, Sachar DB, Rachmilewitz D (1983) Prostanoid synthesis by cultured intestinal epithelial and mononuclear cells in inflammatory bowel disease. Gut 24:659–664

    Google Scholar 

  33. Nielsen OH, Ahnfelt-Rønne I, Elmgreen J (1987) Abnormal metabolism of arachidonic acid in chronic inflammatory bowel disease: enhanced release of leucotriene B4 from activated neutrophils. Gut 28:181–185

    Google Scholar 

  34. Nielsen OH, Elmgreen J, Thomsen BS, Ahnfelt-Rvnne I (1986) Release of leukotriene B4 and 5-hydroxyeicosatetraenoic acid during phagocytosis of artificial immune complexes by peripheral neutrophils in chronic inflammatory bowel disease. Clin Exp Immunol 65:465–471

    Google Scholar 

  35. Hawkey CJ, Karmeli F, Rachmilewitz D (1983) Imbalance of prostacyclin and thromboxane synthesis in Crohn's disease. Gut 24:881–885

    Google Scholar 

  36. Bolin T, Heuman R, Sjödahl R, Tagesson C (1984) Decreased lysophospholipase and increased phospholipase A2 activity in ileal mucosa from patients with Crohn's disease. Digestion 29:55–59

    Google Scholar 

  37. Bennett A, Stamford IF, Stockley HL (1977) Estimation and characterization of prostaglandins in the human gastrointestinal tract. Br J Pharmacol 61:579–586

    Google Scholar 

  38. Gréen K, Aly A, Johanson C (1981) Measurements of prostaglandin biosynthesis in the gastrointestinal tract: biochemical and technical problems. Prostaglandins 21 [Suppl]:1–7

    Google Scholar 

  39. Nishida T, Miwa H, Shigematsu A, Yamamoto M, Iida M, Fujishima M (1987) Increased arachidonic acid composition of phospholipids in colonic mucosa from patients with active ulcerative colitis. Gut 28:1002–1007

    Google Scholar 

  40. Hermanowicz A, Gibson PR, Jewell DP (1985) The role of phagocytes in inflammatory bowel disease. Clin Sci 69:241–249

    Google Scholar 

  41. Metz SA, McRae JR, Robertson RP (1981) Prostaglandins as mediators of paraneoplastic syndromes: review and update. Metabolism 30:299–316

    Google Scholar 

  42. Rampton DS, Sladen GE (1981) The effect of sulphasalazine withdrawal on rectal mucosal function and prostaglandin E2 release in inactive ulcerative colitis. Scand J Gastroenterol 16:157–159

    Google Scholar 

  43. Rampton DS, Sladen GE (1981) Prostaglandin synthesis inhibitors in ulcerative colitis: flurbiprofen compared with conventional treatment. Prostaglandins 21:417–425

    Google Scholar 

  44. Rampton DS, Sladen GE (1981) Relapse of ulcerative proctocolitis during treatment with non-steroidal antiinflammatory drugs. Postgrad Med J 57:297–299

    Google Scholar 

  45. Rampton DS, Sladen GE (1984) Relationship between rectal mucosal prostaglandin production and water and electrolyte transport in ulcerative colitis. Digestion 30:13–22

    Google Scholar 

  46. Rampton DS, Sladen GE, Youlten LJF (1980) Rectal mucosal prostaglandin E2 release and its relation to disease activity, electrical potential difference, and treatment in ulcerative colitis. Gut 21:591–596

    Google Scholar 

  47. Lauritsen K, Laursen LS, Bukhave K, Rask-Madsen J (1986) Effects of topical 5-aminosalicylic acid and prednisolone on prostaglandin E2 and leukotriene B4 levels determined by equilibrium in vivo dialysis of rectum in relapsing ulcerative colitis. Gastroenterology 91:837–844

    Google Scholar 

  48. Lauritsen K, Laursen LS, Bukhave K, Rask-Madsen J (1987) Intraluminal colonic levels of arachidonic acid metabolites in ulcerative colitis. Adv Prostaglandin Thromboxane Leukotriene Res 17:347–352

    Google Scholar 

  49. Lauritsen K, Laursen LS, Bukhave K, Rask-Madsen J (1987) In vivo effects of orally administered prednisolone on prostaglandin and leucotriene production in ulcerative colitis. Gut 28:1095–1099

    Google Scholar 

  50. Lauritsen K, Laursen LS, Bukhave K, Rask-Madsen J (1988) In vivo profiles of eicosanoids in ulcerative colitis, Crohn's colitis, and Clostridium difficile colitis. Gastroenterology 95:11–17

    Google Scholar 

  51. Lauritsen K, Laursen LS, Bukhave K, Rask-Madsen J (1988) Longterm olsalazine treatment: pharmacokinetics, tolerance and effects on local eicosanoid formation in ulcerative colitis and Crohn's colitis. Gut 29:974–982

    Google Scholar 

  52. Lauritsen K, Laursen LS, Bukhave K, Rask-Madsen J (1988) Use of colonic eicosanoid levels as predictors of relapse in ulcerative colitis: double blind placebo controlled study on sulphasalazine maintenance treatment. Gut 29:1316–1321

    Google Scholar 

  53. Lauritsen K, Laursen LS, Bukhave K, Rask-Madsen J (1987) Does vitamin E supplementation modulate in vivo arachidonate metabolism in human inflammation? Pharmacol Toxicol 61:246–249

    Google Scholar 

  54. Wrong O, Metcalfe-Gibson A, Morrison RBI, Ng ST, Howard AV (1965) In vivo dialysis of faeces as a method of stool analysis. I. Technique and results in normal subjects. Clin Sci 28:357–375

    Google Scholar 

  55. Lauritsen K, Hansen J, Bytzer P, Bukhave K, Rask-adsen J (1984) Effects of sulphasalazine and disodium azodisalicylate on colonic PGE2 concentrations determined by equilibrium in vivo dialysis of faeces in patients with ulcerative colitis and healthy controls. Gut 25:1271–1278

    Google Scholar 

  56. Farmer RG (1985) Ulcerative colitis. Medical management. In: Berk JE, Haubrich WS, Kalser MH, Roth JLA, Schaffner F (eds) Bockus gastroenterology. Saunders, Philadelphia, pp 2199–2207

    Google Scholar 

  57. Rampton DS, Hawkey CJ (1984) Prostaglandins and ulcerative colitis. Gut 25:1399–1413

    Google Scholar 

  58. Hawkey CJ, Rampton DS (1985) Prostaglandins and the gastrointestinal mucosa: are they important in its function, disease, or treatment? Gastroenterology 89:1162–1188

    Google Scholar 

  59. Rask-Madsen J (1986) Eicosanoids and their role in the pathogenesis of diarrhoeal diseases. Clin Gastroenterol 15:545–566

    Google Scholar 

  60. Lauritsen K, Laursen LS, Bukhave K, Rask-Madsen J (1987) Role of eicosanoids in inflammatory bowel disease. In: Järnerot G (ed) Inflammatory bowel disease. Raven Press, New York, pp 83–94

    Google Scholar 

  61. Goetzl EJ (1981) Oxygenation products of arachidonic acid as mediators of hypersensitivity and inflammation. Med Clin North Am 65:809–828

    Google Scholar 

  62. Davies P, Bailey PJ, Goldenberg M, Ford-Hutchinson AW (1984) The role of arachidonic acid oxygenation products in pain and inflammation. Annu Rev Immunol 2:335–357

    Google Scholar 

  63. Higgs GA, Moncada S, Vane JR (1984) Eicosanoids in inflammation. Ann Clin Res 16:287–299

    Google Scholar 

  64. Piper PJ (1984) Formation and actions of leukotrienes. Physiol Rev 64:744–761

    Google Scholar 

  65. Sirois P (1985) Pharmacology of the leukotrienes. Adv Lipid Res 21:79–101

    Google Scholar 

  66. Parker CW (1987) Lipid mediators produced through the lipoxygenase pathway. Annu Rev Immunol 5:65–84

    Google Scholar 

  67. Marcus AJ (1985) Eicosanoids as bioregulators in clinical medicine. Am J Med 78:805–810

    Google Scholar 

  68. Naccache PH, Sha'afi RI (1983) Arachidonic acid, leukotriene B4, and neutrophil activation. Ann NY Acad Sci 414:125–139

    Google Scholar 

  69. Goetzl EJ, Pickett WC (1980) The human PMN leukocyte chemotactic activity of complex hydroxy-eicosatetraenoic acids (HETEs). J Immunol 125:1789–1791

    Google Scholar 

  70. Borgeat P, Sirois P, Braquet P, Rola-Pleszczynski M (1986) Leukotrienes and inflammation. In: Cohen MM (ed) Biological protection with prostaglandins, vol I. CRC Press, Cleveland, pp 13–26

    Google Scholar 

  71. Jose PJ (1987) Complement-derived peptide mediators of inflammation. Br Med Bull 43:336–349

    Google Scholar 

  72. Donowitz M (1985) Arachidonic acid metabolites and their role in inflammatory bowel disease. An update requiring addition of a pathway. Gastroenterology 88:580–587

    Google Scholar 

  73. Lobos EA, Sharon P, Stenson WF (1987) Chemotactic activity in inflammatory bowel disease. Role of leukotriene B4. Dig Dis Sci 32:1380–1388

    Google Scholar 

  74. Snyder F (1985) Chemical and biochemical aspects of platelet activating factor: a novel class of acetylated etherlinked choline-phospholipids. Med Res Rev 5:107–140

    Google Scholar 

  75. Vargaftig BB, Braquet PG (1987) PAF-acether today — relevance for acute experimental anaphylaxis. Br Med Bull 43:312–335

    Google Scholar 

  76. Pinckard RN, McManus LM, Hanahan DJ (1982) Chemistry and biology of acetyl glyceryl ether phosphorylcholine (Platelet-activating factor). In: Weissmann G (ed) Advances in inflammation research. Raven Press, New York, 4:147–180

    Google Scholar 

  77. Bach MK (1982) Mediators of anaphylaxis and inflammation. Annu Rev Microbiol 36:317–413

    Google Scholar 

  78. Wengrower D, Eliakim R, Karmeli F, Razin E, Rachmilewitz D (1987) Pathogenesis of ulcerative colitis (UC): enhanced colonic formation of inositol phosphates (IP) and platelet activating factor (PAF) (abstract). Gastroenterology 92:1691

    Google Scholar 

  79. Boughton-Smith NK, Whittle BJR (1988) Formation of the proinflammatory mediator, PAF-acether in different models of colitis (abstract). Gastroenterology 94:A45

    Google Scholar 

  80. Austen KF (1979) Biological implications of the structural and functional characteristics of the chemical mediators of immediate-type hypersensitivity. Harvey Lect 73:93–161

    Google Scholar 

  81. Plaut M, Lichtenstein LM (1982) Histamine and immune responses. In: Ganellin CR, Parsons ME (eds) Pharmacology of histamine receptors. Wrigt PSG, Bristol, pp 392–435

    Google Scholar 

  82. Bradley PB, Fozard JR, Humphrey PPA, Staughan DW (eds) (1984) Proceedings of a symposium: 5-HT, peripheral and central receptors and function. Neuropharmacology 23:1465–1569

    Google Scholar 

  83. Owen DAA (1987) Inflammation — histamine and 5-hydroxytryptamine. Br Med Bull 43:256–269

    Google Scholar 

  84. Regoli D, Barabé J (1980) Pharmacology of bradykinin and related kinins. Pharmacol Rev 32:1–46

    Google Scholar 

  85. Regoli D (1987) Kinins. Br Med Bull 43:270–284

    Google Scholar 

  86. Proud D, Kaplan AP (1988) Kinin formation: mechanisms and role in inflammatory disorders. Annu Rev Immunol 6:49–83

    Google Scholar 

  87. Marceau F, Lussier A, Regoli D, Giroud JP (1983) Pharmacology of kinins: their relevance to tissue injury and inflammation. Gen Pharmacol 14:209–229

    Google Scholar 

  88. Regoli D, Drapeau G, Rovero P, Dion S, D'Orléans-Juste P (1986) The actions of kinin antagonists on B1 and B2 receptor systems. Eur J Pharmacol 123:61–65

    Google Scholar 

  89. Vavrek RJ, Stewart JM (1985) Competitive antagonists of bradykinin. Peptides 6:161–164

    Google Scholar 

  90. Goldstein RH, Wall M (1984) Activation of protein formation and cell division by bradykinin and des-Arg9-bradykinin. J Biol Chem 259:9263–9268

    Google Scholar 

  91. Kachur JF, Allbee W, Gaginella TS (1986) Effect of bradykinin and des-Arg9-bradykinin on ion transport across normal and inflamed rat colonic mucosa (abstract). Gastroenterology 90:1481

    Google Scholar 

  92. Musch MW, Kachur JF, Miller RJ, Field M (1983) Bradykinin-stimulated electrolyte secretion in rabbit and guinea pig intestine. Involvement of arachidonic acid metabolites. J Clin Invest 71:1073–1083

    Google Scholar 

  93. Zipser RD, Patterson JB, Kao HW, Hauser CJ, Locke R (1985) Hypersensitive prostaglandin and thromboxane response to hormones in rabbit colitis. Am J Physiol 249:G457–463

    Google Scholar 

  94. Hoult JRS, Phillips JA (1986) Kinin-induced prostaglandin release in rat colon does not display serosal/mucosal ‘sidedness’ after epithelial removal. Br J Pharmacol 88:3–5

    Google Scholar 

  95. Schur PH (1986) Inherited complement component abnormalities. Annu Rev Med 37:333–346

    Google Scholar 

  96. Hugli TE, Müller-Eberhard HJ (1978) Anaphylatoxins: C3a and C5a. Adv Immunol 26:1–53

    Google Scholar 

  97. Joiner KA, Brown EJ, Frank MM (1984) Complement and bacteria: chemistry and biology in host defense. Annu Rev Immunol 2:461–491

    Google Scholar 

  98. Müller-Eberhard HJ (1986) The membrane attack complex of complement. Annu Rev Immunol 4:503–528

    Google Scholar 

  99. Perlmutter DH, Colten HR (1986) Molecular immunbiology of complement biosynthesis: a model of single-cell control of effector-inhibitor balance. Annu Rev Immunol 4:231–251

    Google Scholar 

  100. Webster RO, Hong SR, Johnston RB, Henson PM (1980) Biological effects of the human complement fragments C5a and C5a des Arg on neutrophil function. Immunopharmacology 2:201–219

    Google Scholar 

  101. Fearon DT, Austen KF (1980) Current concepts in immunology: the alternative pathyway of complement — a system for host resistance to microbial infection. N Engl J Med 303:259–263

    Google Scholar 

  102. Goodman MG, Chenoweth DE, Weigle WO (1982) Induction of interleukin 1 secretion and enhancement of humoral immunity by binding of human C5a to macrophage surface C5a receptors. J Exp Med 156:912–917

    Google Scholar 

  103. Rampart M, Bult H, Herman AG (1983) Activated complement and anaphylatoxins increase the in vitro production of prostacyclin by rabbit aorta endothelium. Naunyn Schmiedebergs Arch Pharmacol 322:158–165

    Google Scholar 

  104. Stimler NP, Bach MK, Bloor CM, Hugiti TE (1982) Release of leukotrienes from guinea pig lung stimulated by C5a des Arg anaphylatoxin. J Immunol 128:2247–2252

    Google Scholar 

  105. Camussi G, Aglietta M, Coda R, Bussolino F, Piacibello W, Tetta C (1981) Release of platelet-activating factor (PAF) and histamine. II. The cellular origin of human PAF: monocytes, polymorphonuclear neutrophils and basophils. Immunology 42:191–199

    Google Scholar 

  106. Asghar SS (1984) Pharmacological manipulation of complement system. Pharmacol Rev 36:223–244

    Google Scholar 

  107. Billingham MEJ (1987) Cytokines as inflammatory mediators. Br Med Bull 43:350–370

    Google Scholar 

  108. Dinarello CA (1984) Interleukin-1. Rev Inf Dis 6:51–95

    Google Scholar 

  109. Smith KA (1984) Interleukin-2. Annu Rev Immunol 2:319–333

    Google Scholar 

  110. Durum SK, Schmidt JA, Oppenheim JJ (1985) Interleukin-1: an immunological perspective. Annu Rev Immunol 3:263–267

    Google Scholar 

  111. Auron PE, Webb AC, Rosenwasser LJ, Mucci SF, Rich A, Wolff SM, Dinarello CA (1984) Nucleotide sequence of human monocyte interleukin-1 precursor cDNA. Proc Natl Acad Sci USA 81:7907–7911

    Google Scholar 

  112. Lomedico PT, Gubler U, Hellman CP, Dukovich M, Giri JG, Pan YC, Collier K, Semionow R, Chun AO, Mizel SB (1984) Cloning and expression of murine interleukin-1 inEscherichia coli. Nature 312:458–462

    Google Scholar 

  113. Beutler B, Cerami A (1986) Cachectin and tumor necrosis factor: two sides of the same biological coin. Nature 320:584–588

    Google Scholar 

  114. Cominelli F, Nast CC, Gentilini P, Zipser RD (1988) Recombinant interleukin-1 induces colonic prostaglandin production: lymphokines may have an important role in colitis (abstract). Gastroenterology 94:A75

    Google Scholar 

  115. Ming RH, Atluru D, Spellman CW, Imir T, Goodwin JS, Strickland RG (1987) Peripheral blood mononuclear-cell interleukin-2 production, receptor generation and lymphokine-activated cytotoxicity in inflammatory bowel disease. J Clin Immunol 7:59–63

    Google Scholar 

  116. Wandall JH, Bendtzen K, Valerius NH, Nielsen AM, Haxholdt H (1986) Serum concentrations of interleukin-1 in ulcerative colitis (UC) and in Crohn's disease (CD) (abstract). Scand J Gastroenterol [Suppl] 21:41

    Google Scholar 

  117. Sartor RB, Chapman EJ, Schwab JH (1988) Increased interleukin-1 beta concentrations in resected inflammatory bowel disease (IBD) tissue (abstract). Gastroenterology 94:A399

    Google Scholar 

  118. Ligumsky M, Simon PL, Karmeli F, Rachmilewitz D (1988) Interleukin-1 — possible mediator of the inflammatory response in ulcerative colitis (UC) (abstract). Gastroenterology 94:A263

    Google Scholar 

  119. Snyderman R, Pike MC (1984) Chemoattractant receptors on phagocytic cells. Annu Rev Immunol 2:257–281

    Google Scholar 

  120. Nast CC, LeDuc LE (1988) Chemotactic peptides. Mechanisms, functions, and possible role in inflammatory bowel disease. Dig Dis Sci [Suppl] 33:50S-57S

    Google Scholar 

  121. Marasco WA, Phan SH, Krutzsch H, Showell HJ, Feltner DE, Nairn R, Becker EL, Ward PA (1984) Purification and identification of formyl-methionyl-leucyl-phenylalanine as the major peptide neutrophil chemotactic factor produced byEscherichia coli. J Biol Chem 259:5430–5439

    Google Scholar 

  122. Bokoch GM, Reed PW (1980) Stimulation of arachidonic acid metabolism in the polymorphonuclear leukocyte by an N-formylated peptide. Comparison with ionophore A23187. J Biol Chem 255:10223–10226

    Google Scholar 

  123. Zipser RD, Patterson JB, LeDuc LE (1987) Chemotactic peptide stimulation of leukotrienes from healthy and inflamed rabbit colons. J Pharmacol Exp Ther 241:218–222

    Google Scholar 

  124. Chester JF, Ross JS, Malt RA, Weitzman SA (1985) Acute colitis produced by chemotactic peptides in rats and mice. Am J Pathol 121:282–290

    Google Scholar 

  125. Foreman JC (1987) Peptides and neurogenic inflammation. Br Med Bull 43:386–400

    Google Scholar 

  126. Shanahan F, Anton P (1988) Neuroendocrine modulation of the immune system. Possible implications for inflammatory bowel disease. Dig Dis Sci [Suppl] 33:41S-49S

    Google Scholar 

  127. Mayer EM, Raybould H, Koelbel C (1988) Neuropeptides, inflammation, and motility. Dig Dis Sci [Suppl] 33:71S-77S

    Google Scholar 

  128. Pernow B (1983) Substance P. Pharmacol Rev 35:85–141

    Google Scholar 

  129. Barthó L, Holzer P (1985) Search for a physiological role of substance P in gastrointestinal motility. Neuroscience 16:1–32

    Google Scholar 

  130. Lotz M, Vaughan JH, Carson DA (1988) Effect of neuropeptides on production of inflammatory cytokines by human monocytes. Science 241:1218–1221

    Google Scholar 

  131. Koch TR, Carney JA, Go VLW (1987) Distribution and quantitation of gut neuropeptides in normal intestine and inflammatory bowel diseases. Dig Dis Sci 32:369–376

    Google Scholar 

  132. Mantyh CR, Gates TS, Zimmerman RP, Welton ML, Passaro EP, Vigna SR, Maggio JE, Kruger L, Mantyh PW (1988) Receptor binding sites for substance P, but not substance K or neuromedin K, are expressed in high concentrations by arterioles, venules, and lymph nodules in surgical specimens obtained from patients with ulcerative colitis and Crohn's disease. Proc Natl Acad Sci USA 85:3235–3239

    Google Scholar 

  133. Grisham MB, Granger DN (1988) Neutrophil-mediated mucosal injury. Role of reactive oxygen metabolites. Dig Dis Sci [Suppl] 33:6S-15S

    Google Scholar 

  134. Fantone JC, Ward PA (1982) Role of oxygen-derived free radicals and metabolites in leukocyte-dependent inflammatory reactions. Am J Pathol 107:397–418

    Google Scholar 

  135. Blake DR, Allen RE, Lunec J (1987) Free radicals in biological systems — a review orientated to inflammatory processes. Br Med Bull 43:371–385

    Google Scholar 

  136. McCord JM (1985) Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 312:159–163

    Google Scholar 

  137. Birnboim HC, Kanabus-Kaminska M (1985) The production of DNA strand breaks in human leukocytes by superoxide may involve a metabolic process. Proc Natl Acad Sci 82:6820–6824

    Google Scholar 

  138. Esterbauer H (1986) Lipid peroxidation products: formation, chemical properties and biological activities. In: Poli G, Cheeseman KH, Dianzani MU, Slater TF (eds) Free radicals in liver injury. IRL Press, Oxford, pp 29–45

    Google Scholar 

  139. Freeman BA, Crapo JD (1982) Biology of disease: free radicals and tissue injury. Lab Invest 47:412–426

    Google Scholar 

  140. Granger DN, Rutili G, McCord JM (1981) Superoxide radicals in feline intestinal ischemia. Gastroenterology 81:22–29

    Google Scholar 

  141. Parks DA, Granger DN (1983) Ischemia-induced vascular changes: role of xanthine oxidase and hydroxyl radicals. Am J Physiol 245:G285-G289

    Google Scholar 

  142. Riis P (1980) A critical survey of controlled studies in the treatment of ulcerative colitis and Crohn's disease. Clin Gastroenterol 9:351–369

    Google Scholar 

  143. Parillo JE, Fauci AS (1979) Mechanisms of glucocorticoid action on immune processes. Annu Rev Pharmacol Toxicol 19:179–201

    Google Scholar 

  144. Scheimer RP (1985) The mechanisms of antiinflammatory steroid action in allergic diseases. Annu Rev Pharmacol Toxicol 25:381–412

    Google Scholar 

  145. Vane JR (1971) Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nature New Biol 231:232–235

    Google Scholar 

  146. Lewis GP, Piper PJ (1975) Inhibition of release of prostaglandins as an explanation of some of the actions of antiinflammatory corticosteroids. Nature 254:308–311

    Google Scholar 

  147. Blackwell GJ, Carnuccio R, DiRosa M, Flower RJ, Parente L, Persico P (1980) Macrocortin: a polypeptide causing the anti-phospholipase effect of glucocorticoids. Nature 287:147–149

    Google Scholar 

  148. Hirata F (1981) The regulation of lipomodulin, a phospholipase inhibitory protein in rabbit neutrophils by phosphorylation. J Biol Chem 256:7730–7733

    Google Scholar 

  149. Cloix JF, Colard O, Rothhut B, Russo-Marie F (1983) Characterization and partial purification of ‘renocortins’: two polypeptides formed in renal cells causing the antiphospholipase-like action of glucocorticoids. Br J Pharmacol 79:313–321

    Google Scholar 

  150. DiRosa M, Flower RJ, Hirata F, Parente L, Russo-Marie F (1984) Nomenclature announcement. Anti-phospholipase proteins. Prostaglandins 28:441–442

    Google Scholar 

  151. Wallner BP, Mattaliano RJ, Hession C, Cate RL, Tizard R, Sinclair LK, Foeller C, Chow EP, Browing JL, Ramachandran KL, Pepinsky RB (1986) Cloning and expression of human lipocortin, a phospholipase A2 inhibitor with potential anti-inflammatory activity. Nature 320:77–81

    Google Scholar 

  152. Pepinsky RB, Sinclair LK, Browning JL, Mattaliano RJ, Smart JE, Chow EP, Falbel T, Ribolini A, Garwin JL, Wallner BP (1986) Purification and partial sequence analysis of a 37-kDa protein that inhibits phospholipase A2 activity from rat peritoneal exudates. J Biol Chem 261:4239–4246

    Google Scholar 

  153. Hawkey CJ, Truelove SC (1981) Effect of prednisolone on prostaglandin synthesis by rectal mucosa in ulcerative colitis: investigations by laminar flow bioassay and radioimmunoassay. Gut 22:190–193

    Google Scholar 

  154. Hoult JRS, Berry CN, Timms E (1985) Failure of antiinflammatory steroids to inhibit prostaglandin release from the hydronephrotic rabbit kidney. Agents Actions 17:304–307

    Google Scholar 

  155. Hales CA, Brandstetter RD, Neely CF, Peterson MB, Kong D, Wattkins WD (1986) Methylprednisolone on circulating eicosanoid and vasomotor tone after endotoxin. J Appl Physiol 61:185–191

    Google Scholar 

  156. Nàray-Fejes-Tóth A, Fejes-Tóth G, Fischer C, Frölich JC (1984) Effect of dexamethasone on in vivo prostanoid production in the rabbit. J Clin Invest 74:120–123

    Google Scholar 

  157. Rosenkrantz B, Náray-Fejes-Tóth A, Fejes-Tóth G, Fischer C, Sawada M, Frölich JC (1985) Dexamethasone effect on prostanoid formation in healthy man. Clin Sci 68:681–685

    Google Scholar 

  158. Robert A (1979) Cytoprotection by prostaglandins. Gastroenterology 77:761–767

    Google Scholar 

  159. Hoult JRS, Moore PK (1978) Sulphasalazine is a potent inhibitor of prostaglandin 15-hydroxydehydrogenase: possible basis for therapeutic action in ulcerative colitis. Br J Pharmacol 64:6–8

    Google Scholar 

  160. Hoult JRS, Moore PK (1980) Effects of sulphasalazine and its metabolites on prostaglandin synthesis, inactivation and actions on smooth muscle. Br J Pharmacol 68:719–730

    Google Scholar 

  161. Hillier K, Mason PJ, Pacheco S, Smith CL (1982) Ulcerative colitis: effect of sulphasalazine, its metabolites and indomethacin on the ability of human colonic mucosa to metabolize prostaglandins in vitro. Br J Pharmacol 76:157–161

    Google Scholar 

  162. Berry CN, Hoult JRS, Peers SH, Agback H (1983) Inhibition of prostaglandin 15-hydroxydehydrogenase by sulphasalazine and a novel series of potent analogs. Biochem Pharmacol 32:2863–2871

    Google Scholar 

  163. Hoult JRS, Page H (1981) 5-Aminosalicylic acid, a cofactor for colonic prostacyclin synthesis? Lancet ii:255

    Google Scholar 

  164. Stenson WF, Lobos E (1983) Inhibition of platelet thromboxane synthetase by sulfasalazine. Biochem Pharmacol 32:2205–2209

    Google Scholar 

  165. Hawkey CJ, Boughton-Smith NH, Whittle BJR (1985) Modulation of human colonic arachidonic acid metabolism by sulfasalazine. Dig Dis Sci 30:1161–1165

    Google Scholar 

  166. Stenson WF, Lobos E (1982) Sulfasalazine inhibits the synthesis of chemotactic lipids by neutrophils. J Clin Invest 69:496–497

    Google Scholar 

  167. Sircar JC, Schwender CF, Carthers ME (1983) Inhibition of soybean lipoxygenase by sulfasalazine and 5-aminosalicylic acid: a possible mode of action in ulcerative colitis. Biochem Pharmacol 32:170–172

    Google Scholar 

  168. Allgayer H, Eisenburg J, Paumgartner G (1984) Soybean lipoxygenase inhibition: studies with sulphasalazine metabolites N-acetylaminosalicylic acid, 5-aminosalicylic acid and sulphapyridine. Eur J Clin Pharmacol 26:449–451

    Google Scholar 

  169. Nielsen OH, Bukhave K, Elmgreen J, Ahnfelt-Rønne I (1987) Inhibition of 5-lipoxygenase pathway of arachidonic acid metabolism in human neutrophils by sulfasalazine and 5-aminosalicylic acid. Dig Dis Sci 32:577–582

    Google Scholar 

  170. Rubinstein A, Das KM, Melamed J, Murphy RA (1978) Comparative analysis of systemic immunological parameters in ulcerative colitis and idiopathic proctitis: effects of sulphasalazine in vivo and in vitro. Clin Exp Immunol 33:217–224

    Google Scholar 

  171. Molin L, Stendahl O (1979) The effect of sulfasalazine and its active components on human polymorphonuclear leukocyte function in relation to ulcerative colitis. Acta Med Scand 206:451–457

    Google Scholar 

  172. Rhodes JM, Bartholomew TC, Jewell DP (1981) Inhibition of leucocyte motility by drugs used in ulcerative colitis. Gut 22:642–647

    Google Scholar 

  173. MacDermott RP, Kane MG, Steele LL, Stenson WF (1986) Inhibition of cytotoxicity by sulfasalazine. I. Sulfasalazine inhibits spontaneous cell-mediated cytotoxicity by peripheral blood and intestinal mononuclear cells from control and inflammatory bowel disease patients. Immunopharmacology 11:101–109

    Google Scholar 

  174. Stenson WF, Mehta J, Spilberg I (1984) Sulfasalazine inhibition of binding of N-formyl-methionyl-leucyl-phenylalanine (FMLP) to its receptor on human neutrophils. Biochem Pharmacol 33:407–412

    Google Scholar 

  175. Baum CL, Selhub J, Rosenberg IH (1981) Antifolate actions of sulfasalazine on intact lymphocytes. J Lab Clin Med 97:779–784

    Google Scholar 

  176. Das KM, Eastwood MA, McManus JPA, Sircus W (1973) The metabolism of salicyl-azosulphapyridine in ulcerative colitis. I. The relationship between metabolites and the response to treatment in inpatients. II. The relationship between metabolites and the progress of the disease studied in outpatients. Gut 14:631–641

    Google Scholar 

  177. Azad Khan AK, Piris J, Truelove SC (1977) An experiment to determine the active therapeutic moiety of sulphasalazine. Lancet ii:892–895

    Google Scholar 

  178. van Hees PAM, Bakker JH, van Tongeren JHM (1980) Effect of sulphapyridine, 5-aminosalicylic acid, and placebo in patients with idiopathic proctitis: a study to determine the active therapeutic moiety of sulphasalazine. Gut 21:632–635

    Google Scholar 

  179. Campieri M, Lanfranchi GA, Bazzocchi G, Brignola C, Sarti F, Franzin G, Battocchia A, Labo G, DalMonte PR (1981) Treatment of ulcerative colitis with high-dose 5-aminosalicylic acid enemas. Lancet ii:270–271

    Google Scholar 

  180. Danish 5-ASA Group (1987) Topical 5-aminosalicylic acid versus prednisolone in ulcerative proctosigmoiditis. A randomized, double-blind multicenter trial. Dig Dis Sci 32:598–602

    Google Scholar 

  181. Azad Khan AK, Truelove SC (1980) Circulating levels of sulphasalazine and its metabolites and their relation to the clinical efficacy of the drug in ulcerative colitis. Gut 21:706–710

    Google Scholar 

  182. Lauritsen K, Hansen J, Ryde M, Rask-Madsen J (1984) Colonic azodisalicylate metabolism determined by in vivo dialysis in healthy volunteers and patients with ulcerative colitis. Gastroenterology 86:1496–1500

    Google Scholar 

  183. Hoult JRS, Moore PK (1983) Prostaglandins and the mode of action of sulphasalazine in ulcerative colitis: two opposing viewpoints. In: Rachmilewitz D (ed) Inflammatory bowel diseases. Martinus Nijhoff, The Hague, pp 174–189

    Google Scholar 

  184. Schlenker T, Peskar BM (1981) Dual effect of sulphasalazine on colonic prostaglandin synthetase. Lancet ii:815

    Google Scholar 

  185. Gould SR, Brash AR, Conolly ME, Lennard-Jones JE (1981) Studies of prostaglandins and sulphasalazine in ulcerative colitis. Prostaglandins Med 6:165–182

    Google Scholar 

  186. Hawkey CJ, Truelove SC (1983) Inhibition of prostaglandin synthetase in human rectal mucosa. Gut 24:213–217

    Google Scholar 

  187. Campieri M, Lanfranchi GA, Bazzocchi G, Brignola C, Corazza G, Cortini C, Michelini M, Labo G (1978) Salicylate other than 5-aminosalicylic acid ineffective in ulcerative colitis. Lancet ii:993

    Google Scholar 

  188. Marcinkiewicz E, Duniec Z, Robak J (1985) Salazosulfapyridine and non-steroidal anti-inflammatory drugs do not inhibit soy-bean lipoxygenase. Biochem Pharmacol 34:148–149

    Google Scholar 

  189. Craven PA, Pfanstiel J, Saito R, DeRubertis FR (1987) Actions of sulfasalazine and 5-aminosalicylic acid as reactive oxygen scavengers in the suppression of bile acidinduced increases in colonic epithelial cell loss and proliferative activity. Gastroenterology 92:1998–2008

    Google Scholar 

  190. Dull BJ, Salata K, Langehove A, Goldman P (1987) 5-Aminosalicylate: oxidation by activated leukocytes and protection of cultured cells from oxidative damage. Biochem Pharmacol 36:2467–2472

    Google Scholar 

  191. Miyachi Y, Yoshioka A, Imamura S, Niwa Y (1987) Effect of sulphasalazine and its metabolites on the generation of reactive oxygen species. Gut 28:190–195

    Google Scholar 

  192. Ahnfelt-Rønne I, Nielsen OH (1987) The anti-inflammatory moiety of sulfasalazine, 5-aminosalicylic acid, is a radical scavenger. Agents Actions 21:191–194

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lauritsen, K., Laursen, L.S., Bukhave, K. et al. Inflammatory intermediaries in inflammatory bowel disease. Int J Colorect Dis 4, 75–90 (1989). https://doi.org/10.1007/BF01646865

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01646865

Keywords

Navigation