Skip to main content
Log in

Hydrodynamic instability in a porous layer saturated with a heat generating fluid

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

Critical Rayleigh numbers determined by linear stabiliy theory are presented for porous-fluid layers of infinite horizontal extent heated internally by a uniform volumetric energy source in the fluid. The thermal coupling between the layer and its environment is represented by a general mixed boundary condition for both the conduction state and the disturbance temperature. Rigid-rigid, rigid-constant pressure, and constant pressure-rigid boundaries are considered in the computations. For a fixed ratio of upper surface Biot number to that at the lower surface, decreasing the Biot number is strictly destabilizing for values of this ratio greater than or equal to one. A layer with a rigid upper surface is generally the most stable; however, a layer with a rigid upper surface and a constant pressure lower surface exhibits the largest values of critical Rayleigh numbers for large values of Biot number.

Zusammenfassung

Mit einer linearen StabilitÄtstheorie wurden kritische Rayleigh-Zahlen für poröse Schichten unendlicher horizontaler Ausdehnung bei innerer Heizung mit konstanter Leistungsdichte bestimmt. Die thermische Kopplung zwischen Systemen und Umgebung besorgt eine gemischte Randbedingung sowohl für den Fall der WÄrmeleitung als auch für die Umschlagstemperatur. Die Begrenzungen haben folgende Eigenschaften: oben und unten fest, oben fest und unten konstanter Druck und umgekehrt. Für ein festes VerhÄltnis der Biot-Zahlen oben und unten wirkt abnehmende Biot-Zahl destabilisierend, wenn dieses VerhÄltnis grö\er oder gleich Eins ist. Am stabilsten ist eine Schicht mit fester oberer Begrenzung; dagegen besitzt eine Schicht mit fester oberer Begrenzung und konstantem Druck unten die grö\ten kritischen Rayleigh-Zahlen für hohe Biot-Zahlen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a:

overall wave number of plan form of disturbance velocity and temperature

Bio :

Biot number, hL/km

c:

specific heat at constant pressure

C:

the ratio (ρc)m/(ρc)f

D:

differential operator, d/dZ

F(x,y):

plan form of disturbance motion

g :

gravitational acceleration, (0,0,-g)

h:

convective heat transfer coefficient on exterior of layer surface

Hm :

mean value of volumetric energy generation rate, energy/unit volume of fluid-porous material — time

kf :

thermal conductivity of fluid

km :

mean thermal conductivity ϕkf + (1ψ)ks

kr :

thermal conductivity ratio, km/kf

ks :

thermal conductivity of solid

L:

height of fluid-porous layer

p:

pressure

p′:

disturbance pressure

RD :

Rayleigh number, Equation (14)

t:

time

T:

conduction state temperature

ul′:

disturbance velocity, (u′,v′,w′)

U:

fluid velocity

UQ :

seepage velocity

W(Z):

vertical component of w′

x,y:

horizontal coordinates

z:

vertical coordinate, 0 ⩽z ⩽L

Z:

dimensionless vertical coordinate, z/L

αf :

thermal diffusivity of fluid

γ:

Biot number ratio, Bi1/Bi0

Β:

isobaric coefficient of thermal expansion of the fluid

θ′:

disturbance temperature

θ(Z):

vertical component of disturbance tempe ratur

χ:

permeability of porous material

λ:

function defined by Equation (9)

Νf :

kinematic viscosity of fluid

ρ:

density

(ρc)m :

mean volumetric heat capacity (ρc)fϕ + (1 ϕ)(ρc)S

σ:

decay constant of disturbance velocity and temperature

ϕ:

porosity of porous material

m:

mean value

s:

solid value

f:

fluid value

o:

value at Z=0

1:

value at Z=1

c:

critical value

r:

reference value

References

  1. Lapwood, E.R.: Convection of a Fluid in a Porous Medium. Proc. Camb. Phil. Soc.44 (1948) 508

    Google Scholar 

  2. Sun, Z.S.; Tien, C.: Onset of Convection in Porous Medium Containing Liquid with a Density Maximum. Proc. Fourth Int. Heat Trans. Conf., Paris, 1970, Paper N.C. 2.11

  3. Rogers, F.T.; Schilberg, L.E.; Morrison, H.L.: Convection Currents in Prous Media, IV. Remarks on the Theory. J. Appl. Phys.,22 (1951) 1476

    Google Scholar 

  4. Muskat, M.: Flow of Homogeneous Fluids Through Porous Media, New York: McGraw-Hill 1937

    Google Scholar 

  5. Pellew, A.; Southwell, R.V.: On Maintained Convective Motion in a Fluid Heated From Below. Proc. Roy. Soc. (London)176A (1940) 312

    Google Scholar 

  6. Ramchandani, R.: Thermal Instability in Porous Fluid Layers Heated from Within. M.Sc. Thesis, Ohio State University 1974

  7. Sparrow, E.M.: On the Onset of Flow Instability in a Channel of Arbitrary Height. J. Appl. Math. Phys.15 (1964) 838

    Google Scholar 

  8. Sparrow, E.M.; Goldstein, R.J.; Jonsson, V.K.: Thermal Instability in a Horizontal Fluid Layer; Effect of Boundary Conditions and Nonlinear Temperature Profile. J. Fluid Mech.18 (1964) 513

    Google Scholar 

  9. Sani, R.L.: Convective Instability. Ph.D. Thesis in Chemical Engineering, University of Minnesota, 1963

  10. Nield, D.A.: Surface Tension and Buoyancy Effects in Cellular Convection. J. Fluid Mech.19 (1964) 341

    Google Scholar 

  11. Hurle, D.T.J.; Jakeman, Z.; Pike, E.R.: On the Solution of the Bénard Problem with Boundaries of Finite Conductivity. Proc. Roy. Soc. (London)296A, 1447 (1967)

    Google Scholar 

  12. Kulacki, F.A.: Thermal Convection in a Horizontal Fluid Layer with Uniform Volumetric Energy Sources. Ph.D. Thesis in Mechanical Engineering, University of Minnesota, 1971

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulacki, F.A., Ramchandani, R. Hydrodynamic instability in a porous layer saturated with a heat generating fluid. Wärme- und Stoffübertragung 8, 179–185 (1975). https://doi.org/10.1007/BF01681559

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01681559

Keywords

Navigation