Skip to main content
Log in

The radiolysis of aqueous ammonium cyanide: Compounds of interest to chemical evolution studies

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

Oxygen-free aqueous solutions of NH4CN (0.1 M, pH 9) were exposed to gamma rays from a60Co source, the mixture of nonvolatile products was fractionated, and the fractions were analyzed. The procedures were chosen to make effective investigations of radiolytic products, and to minimize the contributions of chemical changes which are known to occur in aqueous solution in the absence of ionizing radiation. It has been found that the main constituents are: urea, 25.9%; an oligomer, very likely oligoimine (18.4%); and several fractions (about 50%) which release amino acids on hydrolysis. These fractions differ considerably, as shown by amino acid assay, enzymatic digestion, IR spectra, and biuret reaction. All these tests were found to be positive for two fractions; in two further fractions the enzymatic cleavage was absent, but other tests were positive. Negative enzymatic and biuret tests, and no bands characteristic of amide or peptide, were found for a fraction whose hydrolysate consisted of 55% glycine. Although most of the isolated materials were found to be composite, the results of the analyses were sufficient for getting a reliable over-all picture of the chemical action of the ionizing radiation. The role of free radicals in reactions leading to the formations of radiolytic products was considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambler, R.P. (1963). Biochem. J.89, 349

    Google Scholar 

  • Bailey, J.L. (1967). Techniques in protein chemistry. pp. 50,53, New York: Elsevier

    Google Scholar 

  • Behar, D. (1974). J. Phys. Chem.78, 2660–2630

    Google Scholar 

  • Bellamy, L.I. (1975). The infrared spectra of complex molecules. pp. 193–194. London: Chapman and Hall

    Google Scholar 

  • Bielski, B., Allen, A.O. (1977). J. Phys. Chem.99, 5931–5935

    Google Scholar 

  • Blout, E.R., de Lazé, C., Asadurian, A. (1961). J. Am. Chem. Soc.83, 1895–1900

    Google Scholar 

  • Bühler, H., Bühler, R., Cooper, R. (1976). J. Phys. Chem.80, 1549–1553

    Google Scholar 

  • Cocking, E.C., Yemm, E.W. (1954). Biochem. J.58, XII

  • Draganić, I.G., Draganić, Z.D. (1971). The radiation chemistry of water. p. 29–42. New York: Academic Press

    Google Scholar 

  • Draganić, I., Draganić, Z., Petković, Lj., Nikolić, A. (1973). J. Am. Chem. Soc.95, 7193–7199

    Google Scholar 

  • Draganić, I., Draganić, Z., Marković, V. (1976a). Int. J. Radiat. Phys. Chem.8, 339–342

    Google Scholar 

  • Draganić, Z.D., Draganić, I.G., Borovićanin, M. (1976b). Radiat. Res.66, 42–53

    Google Scholar 

  • Draganić, Z., Draganić, I., Niketić, V. (1977a). Radiat. Res.69, 223–229

    Google Scholar 

  • Draganić, Z., Draganić, I., Shimoyama, A., Ponnamperuma, C. (1977b). Orig. Life8, 371–376

    Google Scholar 

  • Draganić, I., Draganić, Z., Shimoyama, A., Ponnamperuma, C. (1977c). Orig. Life8, 377–382

    Google Scholar 

  • Draganić, I., Draganić, Z., Jovanović, S., Ribnikar, S. (1977d). J. Mol. Evol.10, 103–109

    Google Scholar 

  • Draganić, I.G., Draganić, Z.D. (1980). Rad. Phys. Chem.15, 195–201

    Google Scholar 

  • Ellman, G.L. (1962). Anal. Biochem.3, 40–48

    Google Scholar 

  • Ferris, J.P., Yoshi, P.C., Edelson, E.H., Lawless, J.G. (1978). J. Mol. Evol.11, 293–311

    Google Scholar 

  • Ferris, J.P., Donner, D.B., Lobo, A.P. (1973). J. Mol. Biol.74, 499–510

    Google Scholar 

  • Ferris, J.P., Woss, J.D., Nooner, D.W., Oró, J. (1974). J. Mol. Evol.3, 225–231

    Google Scholar 

  • Ferris, J.P. (1979). Science230, 1135–1136

    Google Scholar 

  • Goodson, J.M., Di Stefano, V. (1969). J. Chromatogr.45, 139–142

    Google Scholar 

  • Goodson, J.M., Di Stefano, V., Smith, J.C. (1971). J. Chromatogr.54, 43–53

    Google Scholar 

  • Hamilton, P.B. (1963). Anal. Chem.35, 2055–2064

    Google Scholar 

  • Heathcote, J.G., Haworth, J.G. (1964). J. Chromatogr.43, 84–92

    Google Scholar 

  • Kasper, C.B. (1970). In: Protein sequence determination, S.B. Needleman, ed., p. 207. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Lee, W.Y. (1972). Anal. Chem.44, 1284–1285

    Google Scholar 

  • Light, A. (1972). Methods in enzymology XXV, 253

  • Löfqvist, B., Sjörberg, B.L. (1971). Acta Chem. Scand.25, 1663–1678

    Google Scholar 

  • Matthews, C.N., Moser, R.E. (1967). Nature215, 1230–1234

    Google Scholar 

  • Matthews, C.N. (1979). Science203, 1136–1137

    Google Scholar 

  • Ogura, H. (1967). J. Radiat. Res. (Japan)8, 93–99

    Google Scholar 

  • Ogura, H., Fujimura, T., Murozono, S., Hirano, K., Kindo, M. (1972). J. Nucl. Sci. Technol.9, 339–343

    Google Scholar 

  • Pagsberg, P. (1972). In Risø Report 256, Danish Atomic Energy Commission, pp. 209–221

  • Schroeder, W.A. (1967). Methods in enzymology XXI, 352

    Google Scholar 

  • Shapshak, P., Ohaji, M. (1972). J. Chromatogr.64, 178–181

    Google Scholar 

  • Vandeginste, B.G.M., De Galan, L. (1975). Anal. Chem.47, 2124–2132

    Google Scholar 

  • Völker, T. (1960). Angew. Chem. [Engl.]72, 379–384

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Draganić, Z.D., Niketić, V., Jovanović, S. et al. The radiolysis of aqueous ammonium cyanide: Compounds of interest to chemical evolution studies. J Mol Evol 15, 239–260 (1980). https://doi.org/10.1007/BF01732951

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01732951

Key words

Navigation