Skip to main content
Log in

Optimal design of disks with respect to ductile creep rupture time

  • Technical Papers
  • Published:
Structural optimization Aims and scope Submit manuscript

Abstract

The problem of optimal design with respect to ductile creep rupture time for rotating disks is solved. The finite strain theory is applied, the material is described by the Norton-Bailey law generalized for true stresses and logarithmic strains. The set of four partial differential equations describing the problem is derived. The optimal shape of the disk is found using parametric optimization with one or two free parameters. The results are compared with disks of uniform thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Gajewski, A. 1981: Effect of physical nonlinearities on optimal design structures.Proc. IUTAM Symp. on Physical Nonlinearities (held in Senlis), pp. 81–84. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Ganczarski, A.; Skrzypek, J. 1989: Optimal prestressing and design of rotating disks against brittle-rupture under unsteady creep conditions.Rozpr. Inż. (Eng. trans.)37, 627–650

    Google Scholar 

  • Ganczarski, A.; Skrzypek, J. 1992: Optimal shape of prestressed disks in creep.Struct. Optim. 4, 47–54

    Google Scholar 

  • Gunneskov, O. 1976: Optimal design of rotating disks in creep.J. Struct. Mech. 2, 141–160

    Google Scholar 

  • Hoff, N.J. 1953: The necking and rupture of rods subjected to constant tensile loads.J. Appl. Mech. Trans. ASME 20, 105–112

    Google Scholar 

  • Kostyuk, A.G. 1953: Analysis of profile of rotating disk in creep conditions (in Russian).Prikl. Mat. Mekh. 17, 615–618

    Google Scholar 

  • Prager, W. 1968: Optimal structural design for given stiffness in stationary creep.Z. Angew. Math. Phys. 2, 252–256

    Google Scholar 

  • Rysz, M. 1987: Optimal design of a thick-walled pipeline crosssection against creep rupture.Acta Mechanica 1/4, 83–102

    Google Scholar 

  • Szuwalski, K. 1989: Optimal design of bars under nonuniform tension with respect to ductile creep rupture.Mech. Struct. Mach. 3, 303–319

    Google Scholar 

  • Szuwalski, K. 1991: Bars of uniform strength vs. optimal with respect to ductile creep rupture time.Proc. IUTAM Symp. on Creep in Structures (held in Cracow), pp. 637–643. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Świsterski, W.; Wróblewski, A.; Życzkowski, M. 1983: Geometrically non-linear eccentrically compressed columns of uniform strength vs. optimal columns.Int. J. Nonlinear Mech. 18, 287–296

    Google Scholar 

  • Życzkowski, M. 1971: Optimal structural design in rheology.J. Appl. Mech. 1, 39–46

    Google Scholar 

  • Życzkowski, M. 1988: Optimal structural design under creep conditions.Appl. Mech. Rev. 12, 453–461

    Google Scholar 

  • Życzkowski, M.; Rysz, M. 1986: Optimization of cylindrical shells under combined loading against brittle creep rupture.Proc. IUTAM Symp. on Inelastic Behaviour of Plates and Shells (held in Rio de Janeiro), pp. 385–401. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Życzkowski, M.; Świsterski, W. 1980: Optimal structural design of flexible beams with respect to creep rupture time.Proc. IUTAM Symp. on Structural Control (held in Waterloo), pp. 795–810. Amsterdam: North-Holland

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szuwalski, K. Optimal design of disks with respect to ductile creep rupture time. Structural Optimization 10, 54–60 (1995). https://doi.org/10.1007/BF01743695

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01743695

Keywords

Navigation