Skip to main content
Log in

A taxonomy of theoretical and experimental tests

  • Aufsätze
  • Published:
Zeitschrift für allgemeine Wissenschaftstheorie Aims and scope Submit manuscript

Zusammenfassung

Der Aufsatz versucht die verschiedenen theoretischen und experimentellen Tests, denen Theorien unterworfen werden, zu kategorisieren. Kriterien sind dabei weder die verschiedenen Arten der experimentellen Anordnungen, noch die verschiedenen Wege, um die Messungen durchzuführen. Stattdessen wird der Begriff des Experimentierens ausgeweitet, und es werden die drei Hauptkategorien der Theorienprüfungen analysiert. Es sind dies: Eine Menge von theoretischen Bedingungen, die der Theorie auferlegt werden, um die größtmögliche Information und heuristische Hilfsmittel zu erhalten; eine Menge von allgemeinen theoretischen Zugängen, um entscheiden zu können, welche Arten von experimentellen Tests für die spezielle Theorie am günstigsten sind; schließlich die Arten der experimentellen Tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. N. Cartwright,How the Laws of Physics Lie Oxford, Clarendon Press 1983.

    Book  Google Scholar 

  2. I. Hacking,Representing and Intervening. Cambridge, Cambridge University Press.

  3. D. Gooding, T. Pinch, and S. Schaffer eds.The Uses of Experiments, Cambridge, Cambridge University Press (1987). Also Proceedings of the Sixth Joint International Conference on the History and Philosophy of Science titled “Theory and Experiment” Ghent and Brussells, 25–29 August 1986. P. Gallison “How Experiments End” Chicago, University of Chicago Press, 1988

    Google Scholar 

  4. For a survey see the Brinkman Report “Physics Through the 1990”s. The report, made public in March 1986, has been initiated by the National Research Council of the U.S.A.

  5. See the excellent reviews J. H. Schwarz, “Introduction to Supersymmetry” 1985, Scottish University Summer School in Physics.

  6. P. van Nieuwenhuizen “Supergravity” in Physics Reports, vol. 68, 189–398, 1981.

    Article  Google Scholar 

  7. The so-called null experiments are characterized by their extremely precise results. For a discussion see R. H. Dicke “Mach's Principle and Equivalence” inProceedings of the International School of Physics “Enrico Fermi” course 20, New York, Academic Press, 1961.

    Google Scholar 

  8. See K. Gavroglu “Research Guiding Principles in Modern Physics: Case studies in elementary particle physics”, Zeit. für Allgemeine Wissenschaftstheorie VII, 223, 1976.

    Article  Google Scholar 

  9. K. Gavroglu “Popper's, Tetradic Schema, Progressive Research Programs, and the Case of Parity Violation in Elementary Particle Physics 1953–1958” ibid. XVI, 261, 1985.

    Article  Google Scholar 

  10. I. Lakatos “Falsification and the methodology of scientific research programs” inPhilosophical Papers vol. 1 edited by J. Worrall and G. Currie Cambridge University Press, 1978, p. 77 footnote 2.

  11. The PPN formalism was first proposed by A. EddingtonThe Mathematical Theory of Relativity Cambridge, England, Cambridge University Press 1922. See also L. I. Schiff “Comparison of Theory and Observation in General Relativity” in Relativity Theory and Astrophysics I, ed. J. Ehlers pp. 105–116 American Mathematical Society, 1967, K. Norttvedt “Equivalence Principle for Massive Bodies II Theory” in Physical Review,169, (1969), pp. 1017–1025.

    Google Scholar 

  12. C. M. Will, K. Nordtvedt “Conservation Laws and Preferred Frames in Relativistic Gravity I. Preferred-Frame Theories and an extended PPN Formalism” in Astrophysical Journal177, 1972, pp. 757–774.

    Article  Google Scholar 

  13. E. Zahar's “Why did Einstein Programme Supersede Lorentz's I” inBritish Journal for the Philosophy of Science 24, 1973, pp. 95–123 re-definition of the novel fact, as he also points out, implies much more (than an already re-vitalized) attention to the totality of questions related with thehistorical research on the origins and development of the various theories,and thus, as is the case in the program we analyzed, the relationship between the theories and the empirical data within a research program is not so straightforward as a more naive consideration of a novel fact would imply.

    Article  Google Scholar 

  14. J. L. AndersonPrinciples of Relativity Physics New York, Academic Press 1967.

    Google Scholar 

  15. A systematic treatment of the notion of approximation in thories is to be found in C. U. Moulines “Approximate application of empirical theories: A general explication” in Erkenntnis10, 1976, p. 201, and C. V. Moulines “A general scheme for intertheoretic approximation” inStructure and Approximation in Physical Theories eds. A. Hartkamper, H. J. Schmidt, New York Plenum Press, 1981.

    Article  Google Scholar 

  16. For a different use of “concept innovation” see J. Sneed “Machine Models for the Growth of Knowledge: Thery Nets in Prolog” published in Proceedings of conference “Criticism and the Growth of Knowledge: 20 years after”, Kluwer Publishers, 1989.

  17. S. Weinberg “Particle Physics: Past and Future”,International Journal of Modern Physics A, vol. 1, (1986), p. 143.

    Article  Google Scholar 

  18. For example the problem of color confinement has been approached from several points of view. See O. W. Greenberg, C. A. Nelson “Color Models of Hadrons”, Physics Reports, vol. 32, 69–121, (1977).

    Article  Google Scholar 

  19. D. Gross “Heterotic String Theory” inParticles and the Universe editors G. Lazarides and Q. I. Shafi, Elsevier Science Publishers 1986.

  20. Superstrings, The first 15 years of superstring theory vols. I, II ed. J. H. Schwarz, World Scientific Publishers 1986. Also J. Ellis “From the Higgs to Superstring Phenomenology” CERN Th. 4391, March 1986. Lectures given at the Lake Louise Winter Institute, Alberta, Canada 17–22 February 1986.

  21. See J. Schwarz reference 3.

  22. J. Schwarz reference 22, p. XI.

  23. D. Gross reference 21, p. 15.

  24. K. Gavroglu reference 8.

  25. S. Weinberg reference 18, p. 142.

  26. D. Gross reference 21, p. 5.

  27. S. Weinberg reference 18, p. 144.

  28. P. Ginsparg, S. Glashow “Desperately Seeking Superstrings”Physics Today, May 1986, p. 7.

  29. For an extensive account of such details see W. G. Cochran, G. M. CoxExperimental Design, New York, McGraw Hill 1957, and C. R. Hicks,Fundamental Concepts in the Design of Experiments, New York, Academic Press 1964.

    Google Scholar 

  30. Such is the case with the measurements for the ΔI=1/2 rule where we know that the deviations are primarily due to the effects of the ΔI=3/2 part of the “weak currents”, even though there is no acceptable structure for these effects. See, for example, R. E. Marshak, Riazzudin, C. P. RyanTheory of Weak Interactions in Particle Physics, New York, Wiley 1969.

    Google Scholar 

  31. K. Gavroglu “Theoretical Frameworks for Theories of Gravitation: A case of a “sui generis” research program” inMethodology and Science, 19, 1986, 91.

    Google Scholar 

  32. M. Gell-Mann, Y. Neeman,The Eightfold Way New York, Benjamin 1964.

    Google Scholar 

  33. S. Weinberg,Gravitation and Cosmology, New York, John-Wiley 1972.

    Google Scholar 

  34. D. W. SciamaThe Physical Foundations of General Relativity, New York, Doubleday 1969.

    Google Scholar 

  35. K. Gavroglu, G. Goundaroulis, “Some Methodological and Historical Considerations in Low Temperature Physics: The Case of Superconductivity 1911–1957” inAnnals of Science 41, 1984, p. 135.

    Article  Google Scholar 

  36. SeeAdventures in Experimental Physics ed. B. Maglich vol. gamma Princeton, World Science Education, 1973.

    Google Scholar 

  37. See reference 8 above.

  38. See reference 34 above.

  39. K. Gavroglu “Some Methodological and Historical Considerations in Low Temperature Physics II: The Case of Superfluidity” inAnnals of Science 43, 1986, p. 137.

    Article  Google Scholar 

  40. M. Ruheman and B. RuhemanLow Temperature Physics Cambridge, Cambridge University Press 1937. H. MuirheadElementary Particle Physics, Oxford Pergamon Press 1971.

    Google Scholar 

  41. R. P. Feynman, M. Gell-Mann “Theory of Fermi Interaction” in Physical Review109, 1958, p. 193.

    Article  Google Scholar 

  42. I. Lakatos reference 12, p. 135 footnote 1.

  43. R. T. Cox et al. “Apparent Evidence of Polarization in a Beam of β-rays” in Proceedings National Academy of Science U.S.A.14, 1928, p. 544.

    Article  Google Scholar 

  44. T. D. Lee, C. N. Yang “Question of Parity Conservation in Weak Interactions” inPhysical Review, 104, 1956, p. 154.

    Article  Google Scholar 

  45. P. FeyerabendAgainst Method, London Verso Edition 1978, p. 68.

    Google Scholar 

  46. K. Mendelssohn “Prwar Work on Superconductivity as Seen from Oxford” inReview of Modern Physics 36, 1964, p. 7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gavroglu, K. A taxonomy of theoretical and experimental tests. Zeitschrift für Allgemeine Wissenschaftstheorie 20, 18–39 (1989). https://doi.org/10.1007/BF01801400

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01801400

Keywords

Navigation