Skip to main content
Log in

Second-order effects in unsteady laminar compressible three-dimensional stagnation-point boundary layers

Effekte zweiter Ordnung in unstetigen laminaren kompressiblen dreidimensionalen Staupunkt-Grenzschichten

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

The flow, heat and mass transfer at the stagnation point of a three-dimensional body in unsteady laminar compressible fluid with variable properties have been studied using a second-order boundary-layer theory when the basic potential flow admits selfsimilarity. Both nodal and saddle point regions have been considered. The equations governing the flow have been solved numerically using an implicit finite-difference scheme. It is observed that the enhancement or reduction in the skin friction and heat transfer due to the second-order boundary layers depends upon the values of the parameter characterizing the unsteadiness in the free-stream velocity, the nature of the stagnation point, the variation of the density-viscosity product across the boundary layer, mass transfer and the wall temperature. The suction increases the skin friction and heat transfer whereas injection does the opposite.

Zusammenfassung

Die instationäre laminare Strömung und die Wärme- und Stoffübertragung am Staupunkt eines dreidimensionalen Körpers in kompressiblen Fluiden mit variablen Stoffwerten wurden unter Benutzung einer Grenzschicht-Theorie zweiter Ordnung untersucht für den Fall, daß die Grundpotentialströmung Modellunabhängigkeit zuläßt. Sowohl Knoten- als auch Sattelpunktbereiche wurden betrachtet. Die Gleichungen, welche die Strömung beschreiben, wurden unter Benutzung eines impliziten Finite-Differenzen-Schemas numerisch gelöst. Es wird beobachtet, daß die Verstärkung oder Reduzierung der Oberflächenreibung und der Wärmeübertragung infolge der Grenzschicht zweiter Ordnung von der Größe der Parameter abhängt, welche die Unstetigkeit in der Freistromgeschwindigkeit, die Natur des Staupunktes, die Variation des Produktes aus Dichte und Viskosität über der Grenzschicht, die Stoffübertragung und Wandtemperatur charakterisieren. Der Sog läßt die Oberflächenreibung und die Wärmeübertragung ansteigen, wogegen Einspritzung das Gegenteil bewirkt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a 1 :

tangential momentum coefficient

c :

ratio of the velocity gradients

c 1 :

energy accommodation coefficient

c p :

specific heat at a constant pressure

c v :

specific heat at a constant volume

C fx ,C fz :

skin-friction coefficients in thex and z directions, respectively

D 1,D2,D3 :

linear differential operators defined in Eqs.(21a-c)

/,F :

first- and second-order dimensionless stream functions in thex direction, respectively

f w :

mass transfer parameter

/',F' :

first- and second-order dimensionless velocities in the x-direction, respectively

″(0), F″(0):

fi/t+rst- and second-order skin-friction parameters in the z-direction, respectively

g, G :

first- and second-order dimensionless stream function in the z-direction, respectively

g′, G′ :

first- and second-order dimensionless velocities in the z-direction, respectively

g″(0), G″(0):

first- and second-order skin-friction parameters in the z-direction, respectively

H :

second-order dimensionless temperature

H'(0) :

second-order heat-transfer parameter

k :

parameter defined in Eq. (19)

k xo ,k zo :

principal curvatures of the body

Ma :

Mach number

N :

ratio of the density viscosity product in the boundary layer and the free stream

Pr :

Prandtl number

q :

rate of heat transfer

R 10 :

first-order potential flow density

Re :

Reynolds number

St :

Stanton number

t :

time

t* :

dimensionless time

T :

temperature

T 10 :

first-order potential flow temperature

u, v, w :

velocity components in thex, y andz directions, respectively

U :

free-stream velocity

U 11,U 21 :

first- and second-order potential flow velocity gradients in thex direction, respectively

W 11,W 21 :

first- and second-order potential flow velocity gradients in the z direction, respectively

x, y, z :

principal, normal and transverse direction, respectively

a, β :

integrals defined in Eq. (22)

ψ :

adiabatic constant

ɛ:

perturbation parameter defined in Eq. (19)

η :

similarity variable

θ :

first-order dimensionless temperature

θ w :

wall temperature

6"(O) :

first-order heat-transfer parameter

λ :

parameter indicating the unsteadiness in the potential flow velocity

υ :

viscosity of fluid

ϱ :

density of fluid

τ wx :

shear stresses at the wall in thex and z directions, respectively

χ :

integral defined in Eq. (22)

ω :

parameter defined in Eq. (19)

ω z1,gw x1 :

vorticity interaction parameters in thex and z direction, respectively

:

denotes derivatives with respect tor

0:

denotes conditions at the stagnation point

1:

denotes due to first-order effect

2:

denotes due to second-order effect

d, D :

displacement effects proportional toU21 andW21, respectively

e :

denotes conditions at the edge of the boundary layer

j :

temperature-jump effect

L:

longitudinal curvature effect

s:

velocity-slip effect

t :

transverse curvature effect

v, V :

vorticity interaction effect proportional to Ωz1 andgw x1, respectively

w:

denotes conditions on the surface

References

  1. Van Dyke, M.: Higher-order boundary-layer theory. Ann. Rev. Fluid Mech. 1 (1969) 265–292

    Google Scholar 

  2. Gersten, K.; Gross, J. F.: Higher-order boundary-layer theory. Fluid Dyn. Trans. 7 (1976) 7–36

    Google Scholar 

  3. Afzal, N.; Rizvi, S. M. A.: Second-order unsteady stagnationpoint boundary-layer solutions. AIAA J. 15 (1977) 1051–1053

    Google Scholar 

  4. Vasantha, R.; Nath, G.: Unsteady compressible second-order boundary layers at the stagnation point of two-dimensional and axisymmetric bodies. Wärme-Storfübertrag. 20 (1986) 273–281

    Google Scholar 

  5. Alexandrescu, M.: The asymptotic solutions of compressible non-steady boundary layer. Rev. Roum. Sei. Techn.-Mech. Appl. 28 (1983) 235–243

    Google Scholar 

  6. Papenfuss, H. D.: Die Grenzschichteffekte 2. Ordnung bei der kompressiblen dreidimensionalen Staupunktströmung. Doctoral Dissertation, Ruhr Univ. 1975

  7. Papenfuss, H. D.: Higher-order solutions for incompressible, three-dimensional boundary layer flow at the stagnation point of a general body. Arch. Mech. 26 (1974) 981–994

    Google Scholar 

  8. Papenfuss, H. D.: The second-order boundary-layer effects for the compressible three-dimensional stagnation-point flow. J. Mech. 16 (1977) 705–732

    Google Scholar 

  9. Papenfuss, H. D.: The seond-order boundary-layer effects at the three-dimensional stagnation point with strong suction or blowing. Z. Flugwiss. Weltraumforsch. 1 (1977) 87–96

    Google Scholar 

  10. Papenfuss, H. D.: Mass transfer effects on the three-dimensional second-order boundary flow at the stagnation point of blunt bodies. Mech. Res. Comm. 1 (1974) 285–290

    Google Scholar 

  11. Gersten, K.; Papenfuss, H. D.; Gross, J. F.: Influence of the Prandtl number on second-order heat-transfer due to surface curvature at a three-dimensional stagnation point. Int. J. Heat Mass Transfer 121 (1978) 275–284

    Google Scholar 

  12. Dwoyer, D. L.; Lewis, C. H.; Gogineni, P. R.: Surface curvature effects on three-dimensional blunt-body boundary layers. AIAA J. 17 (1979) 133–134

    Google Scholar 

  13. Krishnaswamy, R.; Nath, G.: Compressible second-order boundary layers for three-dimensional stagnation point flow with mass transfer. Int. J. Engng. Sci. 20 (1982) 1221–1233

    Google Scholar 

  14. Vasantha, R.; Nath, G.: Second-order boundary layers for steady incompressible three-dimensional stagnation-point flows. Int. J. Heat Mass Transfer 29 (1986) 1993–1996

    Google Scholar 

  15. Kumari, M.: Unsteady incompressible second-order boundarylayer flow at a three-dimensional stagnation point. Acta Mech. 66 (1987) 61–81

    Google Scholar 

  16. Gross, J. F.; Dewey, C. F.: Similar solutions of the laminar boundary layer equations with variable fluid properties. Fluid Dyn. Trans. 2 (1965) 529

    Google Scholar 

  17. Inouye, K.; Tate, A.: Finite-difference version of quasilinearization applied to boundary-layer equations. AIAA J. 12 (1974) 558–560

    Google Scholar 

  18. Krishnaswamy, R.; Nath, G.: A parametric differentiation version with finite-difference scheme applicable to a class of problems in boundary layer flow with massive blowing. Comp. Fluids 10(1982) 1–6

    Google Scholar 

  19. Van Dyke, M.: Higher approximations in boundary-layer theory. Part 2: Applications to leading edges. J. Fluid Mech. 14 (1962) 481–495

    Google Scholar 

  20. Van Dyke, M.: Higher approximations in boundary-layer theory. Part 3: Parabola in uniform stream. J. Fluid Mech. 19 (1964) 145–159

    Google Scholar 

  21. Devan, L.: Second-order incompressible laminar boundary layer development on a two-dimensional semi-infinite body. Doctoral Dissertation, Univ. of California, 1964

  22. Street, R. E.: A study of boundary conditions in slip-flow aerodynamics. Rarefied Gas Dyn. London: Pergamon Press 1960

    Google Scholar 

  23. Kumari, M.; Nath, G.: Self-similar solution of unsteady compressible three-dimensional stagnation-point boundary layers. ZAMP 32 (1981) 267–276

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumari, M. Second-order effects in unsteady laminar compressible three-dimensional stagnation-point boundary layers. Wärme- und Stoffübertragung 23, 219–227 (1988). https://doi.org/10.1007/BF01807324

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01807324

Keywords

Navigation