Skip to main content
Log in

Hemoglobins, XLVIIII

The Primary Structure of a Monomeric Hemoglobin from the Hagfish,Myxine glutinosa L.: Evolutionary Aspects and Comparative Studies of the Function with Special Reference to the Heme Linkage

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

Hagfish hemoglobin has three main components, one of which is Hb III. It is monomeric and consists of 148 amino acid residues (M = 17 350). Its complete primary structure, previously published, is discussed here. The proximal amino acid (F8) of the heme linkage is histidine as always in the hemoglobins, but the regularly expected distal histidine E7 is substituted by glutamine. This substitution, leading to a new kind of heme linkage, has hitherto only been demonstrated in opossum hemoglobin. It is suggested that E7, Gln, is directed out of the heme pocket, and that the adjacent Ell, Ile, is directed toward the inside of the pocket, giving the distal heme contact instead of histidine.Myxine Hb III has an additional tail of 9 amino acid residues at its N-terminal end, as has the hemoglobin ofLampetra fluviatilis. The genetic codes ofMyxine andLampetra hemoglobins show 117 differences, in spite of many morphological resemblances between hagfish and lamprey. Their primary hemoglobin structures show differences substantial enough to bo compatible with the divergence of the two families some 400–500 million years ago.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bauer C, Engels U, Paléus S (1975) Nature 256:66–68

    PubMed  Google Scholar 

  • Braunitzer G, Fujiki H (1969) Naturwissenschaften 56:322–323

    PubMed  Google Scholar 

  • Braunitzer G, Schrank B, Stangl A, Bauer C (1978a) Hoppe-Seyler's Z Physiol Chem 359:547–558

    PubMed  Google Scholar 

  • Braunitzer G, Schrank B, Stangl A, Scheithauer U (1978b) Hoppe-Seyler's Z Physiol Chem 359:137–146

    PubMed  Google Scholar 

  • Braunitzer G, Gehring-Müller R, Hilschmann N, Hilse K, Hobom G, Rudloff V, Wittmann-Liebold B (1961) Hoppe-Seyler's Z Physiol Chem 325:283–286

    Google Scholar 

  • Briehl R (1963) J Biol Chem 238:2361–2366

    Google Scholar 

  • Buse G, Braig S, Braunitzer G (1969) Hoppe-Seyler's Z Physiol Chem 350:1686–1690

    PubMed  Google Scholar 

  • Chauvet JP, Acher R (1970a) FEBS Lett 8:263–264

    PubMed  Google Scholar 

  • Chauvet JP, Acher R (1970b) FEBS Lett 9:202–204

    PubMed  Google Scholar 

  • Edmundson AB (1965) Nature 205:883–887

    Google Scholar 

  • Fermi G (1975) J Mol Biol 97:237–256

    PubMed  Google Scholar 

  • Gerald PS, Efron ML (1961) Proc Natl Acad Sci USA 47:1758–1767

    PubMed  Google Scholar 

  • Hendrickson WA, Love WE, Karle J (1973) J Mol Biol 74:331–361

    PubMed  Google Scholar 

  • Hilse K, Braunitzer G (1968) Hoppe-Seyler's Z Physiol Chem 349:433–450

    PubMed  Google Scholar 

  • Huber R, Epp O, Steigemann W, Formanek H (1971) Eur J Biochem 19:42:50

    Google Scholar 

  • Hunt LT, Dayhoff MO (1976) In: Dayhoff MO (ed) Atlas of Protein Sequence and Structure. National Biomedical Research Foundation, Georgetown University Medical Center, Washington, D.C. 20007, pp 191–233

    Google Scholar 

  • Hörlein H, Weber G (1948) Dtsch Med Wochenschr 39:476–478

    Google Scholar 

  • Imamura T, Baldwin TO, Riggs A (1972) J Biol Chem 247:2785–2797

    PubMed  Google Scholar 

  • Isaacks RE, Kim HD, Harkness DR (1978) Can J Zool 56:887–890

    Google Scholar 

  • Jarvik E (1964) Ann Soc Roy Zool Belgique 94:11–95

    Google Scholar 

  • Kleinschmidt T, Braunitzer G (1976) Hoppe-Seyler's Z Physiol Chem 357:1805–1808

    PubMed  Google Scholar 

  • Li SL, Riggs A (1970) J Biol Chem 245:6149–6169

    PubMed  Google Scholar 

  • Li SL, Riggs A (1972) J Mol Evol 1:208–210

    Google Scholar 

  • Liljeqvist G, Braunitzer G, Paléus S (1979) Hoppe-Seyler's Z Physiol Chem 360:125–135

    PubMed  Google Scholar 

  • Manwell C (1963) In: Brodal A and Fänge R (eds) The Biology ofMyxine. Universitetsforlaget, Oslo, Norway, pp 372–455

    Google Scholar 

  • Muirhead H, Perutz MF (1963) Nature 199:633–638

    PubMed  Google Scholar 

  • Muller CJ, Kingma S (1961) Biochim Biophys Acta 50:595

    PubMed  Google Scholar 

  • Nash AR, Fisher WK, Thompson EOP (1976) Aust J Biol Sci 29:73–97

    PubMed  Google Scholar 

  • Padlan EA, Love WE (1974) J Biol Chem 249:4067–4078

    PubMed  Google Scholar 

  • Paléus S, Vesterberg O (1966) Intern SympComparative Hemoglobin Structure, Thessaloniki, 11–13 April 1966, M. Triantafylou, Thessaloniki, pp 149–150

    Google Scholar 

  • Paléus S, Liljeqvist G (1972) Comp Biochem Physiol 42B:611–617

    Google Scholar 

  • Paléus S, Vesterberg O, Liljeqvist G (1971) Comp Biochem Physiol 39B:551–557

    Google Scholar 

  • Perutz MF (1976) Br Med Bull 32:195–208

    PubMed  Google Scholar 

  • Perutz MF, Lehmann H (1968) Nature 219:902–909

    PubMed  Google Scholar 

  • Perutz MF, Muirhead H, Cox JM, Goaman LCG (1968) Naure 219:131–139

    Google Scholar 

  • Quast R, Paléus S, Bloom G, Östlund E (1969) Acta Chem Scand 23:3595–3596

    PubMed  Google Scholar 

  • Romero Herrera AE, Lehmann H (1974) Biochim Biophys Acta 336:318–323

    Google Scholar 

  • Sladić-Simić D, Kleinschmidt T, Braunitzer G (1977) Hoppe-Seyler's Z Physiol Chem 358:591–594

    PubMed  Google Scholar 

  • Steigemann W, Weber E (1979) J Mol Biol 127:309–338

    PubMed  Google Scholar 

  • Stensiö E (1958) Traité de Zoologie 13:173–425

    Google Scholar 

  • Stenzel P, Brimhall B, Jones R, Black J, Mc Lachlan A, Gibson D (1979) J Biol Chem 254:2071–2076

    PubMed  Google Scholar 

  • Svedberg T, Eriksson-Quensel IB (1934) J Am Chem Soc 56:1700–1706

    Google Scholar 

  • Takano T (1977) J Mol Biol 110:537–568

    PubMed  Google Scholar 

  • Tentori L, Vivaldi G, Carta S, Marinucci M, Massa A, Antonini E, Brunori M (1973) Int J Peptide Protein Res 5:187–200

    Google Scholar 

  • Tucker PW, Phillips SEV, Perutz MF, Houtchens RA, Caughey WS (1978) In: Caughey WS (ed) Biochemical and Clinical Aspects of Hemoglobin Abnormalities. Academic Press, pp 1–15

  • Wald G, Riggs A (1951) J Gen Physiol 35:45–53

    PubMed  Google Scholar 

  • Zelenik M, Rudloff V, Braunitzer G (1979) Hoppe-Seyler's Z Physiol Chem 360:1879–1894

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liljeqvist, G., Paléus, S. & Braunitzer, G. Hemoglobins, XLVIIII. J Mol Evol 18, 102–108 (1982). https://doi.org/10.1007/BF01810828

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01810828

Key words

Navigation