Skip to main content
Log in

Salicylates and proton transport through lipid bilayer membranes: A model for salicylate-induced uncoupling and swelling in mitochondria

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Mechanisms of proton transport were investigated in phospholipid bilayer membranes exposed to salicylates and benzoates. Membranes were formed from diphytanoyl phosphatidylcholine in decane plus chlorodecane (50% vol/vol). Proton and anion conductances (G H andG A) were calculated from the total conductances and the H+ or A diffusion potentials produced by transmembrane H+ or A gradients. At low pH salicylate caused aG H which was proportional to the square of the total weak acid concentration, andG H was maximum when pH=pK. At neutral to alkaline pH salicylate caused aG A which was proportional to the first power of the salicylate concentration, andG A was independent of pH. BothG H andG A were inhibited by phloretin. The results suggest that salicylate acts as an HA2-type proton carrier at low pH and as a lipid-soluble anion at neutral pH. Salicylate has been implicated as a causal factor in Reye's syndrome, as well as in aspirin poisoning, and salicylate has been reported to increase the proton conductance of inner mitochondrial membranes. The present results suggest that in mitochondria salicylate increases passive proton uptake by a combination of HA influx (driven by the concentration gradient) and A efflux (driven by the voltage and concentration gradients). Model calculations suggest that over the range of therapeutic to toxic concentrations, salicylate causes net H+ influx sufficient to explain the reported “loose coupling,” uncoupling and swelling of mitochondria. the relative ineffectiveness of aspirin and benzoate can be explained by their low A permeabilities, whereas the ineffectiveness of 2,6-dihydroxybenzoate can be explained by its low pK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersen, O.S., Finkelstein, A., Katz, I., Cass, A. 1976. Effect of phloretin on the permeability of thin lipid membranes.J. Gen. Physiol. 67:749–771

    Article  PubMed  Google Scholar 

  2. Aprille, J.R. 1977. Reye's syndrome: Patient serum alters mitochondrial function and morphology in vitro.Science 197:908–910

    PubMed  Google Scholar 

  3. Benz, R., McLaughlin, S. 1983. The molecular mechanism of action of the proton ionophore FCCP (carbonylcyanidep-trifluoromethoxy-phenylhydrazone).Biophys. J. 41:381–398

    PubMed  Google Scholar 

  4. Brody, T.M. 1956. Action of sodium salicylate and related compounds on tissue metabolism in vitro.J. Pharmacol. 117:39–51

    Google Scholar 

  5. Crandall, E.D., Winter, H.I., Schaeffer, J.D., Bidani, A. 1982. Effects of salicylate on HCO 3 /Cl exchange across the human erythrocyte membrane.J. Membrane Biol. 65:139–145

    Google Scholar 

  6. Cunarro, J., Weiner, M.W. 1975. Mechanism of action of agents which uncouple oxidative phosphorylation: Direct correlation between proton-carrying and respiratory-releasing properties using rat liver mitochondria.Biochim. Biophys. Acta 387:234–240

    PubMed  Google Scholar 

  7. Dilger, J.P., McLaughlin, J.G.A., McIntosh, T.J., Simon, S.A. 1979. The dielectric constant of phospholipid bilayers and the permeability of membranes to ions.Science 206:1196–1198

    PubMed  Google Scholar 

  8. Finkelstein, A. 1970. Weak-acid uncouplers of oxidative phosphorylation. Mechanism of action on thin lipid membranes.Biochim. Biophys. Acta 205:1–6

    PubMed  Google Scholar 

  9. Flower, R.J., Moncada, S., Vane, J.R. 1985. Analgesic-antipyretics and anti-inflammatory agents.In: The Pharmacological Basis of Therapeutics. (7th Ed.) A.G. Gillman, L.S. Goodman, T.W. Rall, and F. Murad, editors. pp. 674–715. Macmillan, New York

    Google Scholar 

  10. Forsyth, B.W., Horwitz, R.I., Acampora, D., Shapiro, E.D., Viscoli, C.M., Feinstein, A.R., Henner, R., Holabird, N.B., Jones, B.A., Karabelas, A.D.E., Kramer, M.S., Miclette, M., Wells, J.A. 1989. New epidemiologic evidence confirming that bias does not explain the aspirin/Reye's syndrome association.JAMA 261:2517–2524

    PubMed  Google Scholar 

  11. Gutknecht, J. 1987. Proton conductance through phospholipid bilayers: Water wires or weak acids?J. Bioenerg. Biomembr. 19:427–442

    PubMed  Google Scholar 

  12. Gutknecht, J. 1987. Proton/hydroxide conductance through phospholipid bilayer membranes: Effects of phytanic acid.Biochim. Biophys. Acta 898:97–108

    PubMed  Google Scholar 

  13. Gutknecht, J. 1988. Proton conductance caused by longchain fatty acids in phospholipid bilayer membranes.J. Membrane Biol. 106:83–93

    Google Scholar 

  14. Gutknecht, J. 1989. Proton transport caused by salicylates in phospholipid bilayer membranes: A model for salicylate-induced “loose coupling” in mitochondria.Biophys. J. 55:568a

    Google Scholar 

  15. Gutknecht, J., Tosteson, D.C. 1973. Diffusion of weak acids through lipid bilayer membranes: Effects of chemical reactions in the aqueous unstirred layers.Science 182:1258–1261

    PubMed  Google Scholar 

  16. Haas, R., Parker, W.D., Stumpf, D., Eguren, L.A. 1985. Salicylate-induced loose coupling: Protonmotive force measurements.Biochem. Pharmacol. 34:900–902

    PubMed  Google Scholar 

  17. Hall, J.E., Mead, C.A., Szabo, G. 1973. A barrier model for current flow in lipid bilayer membranes.J. Membrane Biol. 11:75–97

    Google Scholar 

  18. Hladky, S.B. 1974. The energy barriers to ion transport by nonactin across thin lipid membranes.Biochim. Biophys. Acta 352:71–85

    PubMed  Google Scholar 

  19. Joy, M.M., Cutler, D.J. 1987. On the mechanism of transport of salicylate andp-hydroxybenzoic acid across human red cell membranes.J. Pharm. Pharmacol. 39:266–271

    PubMed  Google Scholar 

  20. Kasianowicz, J., Benz, R., McLaughlin, S. 1984. The kinetic mechanism by which CCCP (carbonylcyanidem-chlorophenylhydrazone) transports protons across membranes.J. Membrane Biol. 82:179–190

    Google Scholar 

  21. Kauffman, G. 1989. Aspirin-induced gastric mucosal injury: Lessons learned from animal models.Gastroenterology 96:606–614

    PubMed  Google Scholar 

  22. Lea, E.J.A., Croghan, P.C. 1969. The effect of 2,4-dinitrophenol on the properties of thin lipid films.J. Membrane Biol. 1:225–237

    Google Scholar 

  23. Leo, A., Hansch, C., Elkins, D. 1971. Partition coefficients and their uses.Chem. Rev. 71:525–616

    Google Scholar 

  24. McLaughlin, S. 1972. The mechanism of action of DNP on phospholipid bilayer membranes.J. Membrane Biol. 9:361–371

    Google Scholar 

  25. McLaughlin, S. 1973. Salicylates and phospholipid bilayer membranes.Nature (London) 243:234–236

    Google Scholar 

  26. McLaughlin, S.G.A., Dilger, J.P. 1980. Transport of protons across membranes by weak acids.Physiol. Rev. 60:825–863

    PubMed  Google Scholar 

  27. Mitchell, P., Moyle, J. 1967. Acid-base titration across the membrane system of rat-liver mitochondria.Biochem. J. 104:588–600

    PubMed  Google Scholar 

  28. Nicholls, D.G. 1982. Bioenergetics: An Introduction to Chemiosmotic Theory. Academic, New York

    Google Scholar 

  29. Pauling, L. 1960. The Nature of the Chemical Bond. (3rd Ed.) Cornell University Press, Ithaca, New York

    Google Scholar 

  30. Perkins, W., Cafiso, D.S. 1987. Procedure using voltage-sensitive spin-labels to monitor dipole potential changes in phospholipid vesicles: The estimation of phloretin-induced conductance changes in vesicles.J. Membrane Biol. 96:165–173

    Google Scholar 

  31. Pinsky, P.F., Hurwitz, E.S., Schonberger, L.B., Gunn, W.J. 1988. Reye's syndrome and aspirin: Evidence for a doseresponse effect.JAMA 260:657–661

    PubMed  Google Scholar 

  32. Rainsford, K.D. 1984. Aspirin and the Salicylates. Butterworths, New York

    Google Scholar 

  33. Scarpa, A. 1978. Transport across mitochondrial membranes.In: Membrane Transport in Biology. G. Giebisch, D.C., Tosteson, and H.H. Ussing, editors. Vol. 2, pp. 263–355. Springer-Verlag, New York

    Google Scholar 

  34. Serjeant, E.P., Dempsey, B. 1979. Ionisation Constants of Organic Acids in Aqueous Solution. Pergamon, New York

    Google Scholar 

  35. Stumpf, D.A. 1979. Mitochondrial multisystem disorders: Clinical, biochemical and morphologic features.In: Current Neurology. H.R. Tyler and D.M. Dawson, editors. Vol. 2, pp. 117–149. Mifflin Professional Publishers, Boston

    Google Scholar 

  36. Szabo, G., Eisenman, G., McLaughlin, S.G.A., Krasne, S. 1972. Ionic probes of membrane structures.Ann. NY Acad. Sci. 195:273–290

    PubMed  Google Scholar 

  37. Vane, J., Botting, R. 1987. Inflammation and the mechanism of action of anti-inflammatory drugs.FASEB J. 1:89–96

    PubMed  Google Scholar 

  38. Walter, A., Gutknecht, J. 1984. Monocarboyxlic acid permeation through lipid bilayer membranes.J. Membrane Biol. 77:255–264

    Google Scholar 

  39. Whitehouse, M.W. 1964. Biochemical properties of anti-inflammatory drugs: III. Uncoupling of oxidative phosphorylation in a connective tissue (cartilage) and liver mitochondria by salicylate analogues.Biochem. Pharmacol. 13:319–336

    PubMed  Google Scholar 

  40. You, K. 1983. Salicylate and mitochondrial injury in Reye's syndrome.Science 221:163–165

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutknecht, J. Salicylates and proton transport through lipid bilayer membranes: A model for salicylate-induced uncoupling and swelling in mitochondria. J. Membrain Biol. 115, 253–260 (1990). https://doi.org/10.1007/BF01868640

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868640

Key Words

Navigation