Skip to main content
Log in

Surface charges on the outer side of mollusc neuron membrane

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The shifts of current-voltage characteristics of sodium and calcium inward currents produced by changes in the concentration of divalent cations (Mg2+, Ca2+, Sr2+, Ba2+) and in pH of the extracellular solution have been measured on isolated neurons of the molluscHelix pomatia intracellularly perfused with potassium-free solutions. On the basis of these shifts and using Stern's theory (O. Stern, 1924.Z. Electrochem. 30∶508–516), the binding constants for the ions to charged groups of the outer side of the somatic membrane and the density of the surface charges produced by these groups have been calculated. For groups located in the vicinity of sodium channels we obtainedK Ca=90±10,K Sr=60±10,K Ba=25±5 andK Mg=16±5m −1 at pH=7.7 and for groups located in the vicinity of calcium channelsK Ca=67±10,K Sr=20±5 andK Ba=19±5m −1 at pH=7.0. The same groups bind H+ ions with apparent pK=6.2±0.2 that corresponds toK H=1.6×106 m −1. The density of fixed charges near the sodium channels is 0.17±0.05 e/nm2 (pH=7.7) and near the calcium channels is 0.23±0.05 electrons/nm2 (pH=7.0). From the comparison of the obtained values with the data about binding constants of the same ions to different negatively charged phospholipids, a suggestion is made that just the phophatidylserine is responsible for the surface potential of the outer side of the somatic membrane. It was also shown that the presence of this potential results in a change in the concentration of carrier ions near the membrane which affects the maximal values of the corresponding transmembrane currents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Begenisich, T. 1975. Magnitude and location of surface charges in Myxicola giant axon.J. Gen. Physiol. 66:47–65

    Google Scholar 

  • Chandler, W.K., Hodgkin, A.L., Meves, H. 1965. The effect of changing the internal solution on sodium inactivation and related phenomena.J. Physiol. (London) 180:821–836

    Google Scholar 

  • Chapman, D.L. 1913. A contribution to the theory of electrocapillarity.Phil. Mag. 25:475–481

    Google Scholar 

  • Cullis, P.R., De Kruijff, B. 1979. Lipid polymorphism and the functional roles of lipids in biological membranes.Biochim. Biophys. Acta 559:393–420

    Google Scholar 

  • Eisenberg, M., Gresalfi, T., Riccio, T., McLaughlin, S. 1979. Adsorption of monovalent cations to bilayer membranes containing negative phospholipids.Biochemistry 18:5213–5223

    Google Scholar 

  • Gilbert, D.L., Ehrenstein, G. 1970. Use of fixed charge model to determine the pK of the negative sites on the external membrane surface.J. Gen. Physiol. 55:822–839

    Google Scholar 

  • Gouy, G. 1910. Sur la constitution de la charge électrique à la surface d'un électrolyte.J. Phys. (Paris) 9:457–468

    Google Scholar 

  • Hammoudan, M.M., Nir, S., Bentz, J., Mayhew, E., Bentz, J., Stewart, T.P., Hui, S.W., Kurland, R.J. 1981. Interaction of La3+ with phosphatidylserine vesicles.Biochim. Biophys. Acta 645:102–114

    Google Scholar 

  • Hille, B., Woodhull, A.M., Shapiro, B.I. 1975. Negative surface charge near sodium channel of nerve. Divalent ions, monovalent ions and pH.Philos. Trans. R. Soc. London B. 270:301–318

    Google Scholar 

  • Kostyuk, P.G., Doroshenko, P.A., Ponomaryov, V.N. 1979. Surface charge in the area of location of calcium channels in mollusc neuronal membrane.Dokl. Akad. Nauk SSSR 250:464–467

    Google Scholar 

  • Kostyuk, P.G., Krishtal, O.A. 1977. Separation of sodium and calcium currents in the somatic membrane of mollusc neurones.J. Physiol. (London) 270:545–568

    Google Scholar 

  • Kostyuk, P.G., Krishtal, O.A., Doroshenko, P.A. 1974. Calcium currents in snail neurones. I. Identification of calcium current.Pfluegers Arch. 348:83–93

    Google Scholar 

  • Kostyuk, P.G., Krishtal, O.A., Pidoplichko, V.I. 1975. Effect of internal fluoride and phosphate on membrane currents during intracellular dialysis of nerve cells. Nature (London)257:691–693

    Google Scholar 

  • Kostyuk, P.G., Krishtal, O.A., Pidoplichko, V.I. 1981. Calcium inward currents and related charge movements in the membrane of snail neurones.J. Physiol. (London) 310:723–745

    Google Scholar 

  • Kostyuk, P.G., Mironov, S.L. 1982. Theoretical description of calcium channel in the membrane of rat dorsal root ganglion neurons.Neurophysiology (USSR) 14:94–101

    Google Scholar 

  • Kostyuk, P.G., Mironov, S.L., Doroshenko, P.A. 1982. Energy profile of the calcium channel in the membrane of mollusc neurons.J. Membrane Biol. 70:181–189

    Google Scholar 

  • Magura, I.S., Grobova, E.V., Zamekhovsky, I.Z. 1972. Electrical characteristics of mollusc giant neurons.Neurophysiology (USSR) 4:651–655

    Google Scholar 

  • Martell, A.E., Smith, R.T. 1977. Critical Stability Constants. Vol. 3. Plenum Press, New York

    Google Scholar 

  • McLaughlin, S.G.A., Mulrine, N., Gresalfi, T., Vaio, G., McLaughlin, A. 1981. Adsorption of divalent cations to bilayer membranes containing phosphatidylserine.J. Gen. Physiol. 77:445–473

    Google Scholar 

  • McLaughlin, S.G.A., Szabo, G., Eisenman, G. 1971. Divalent ions and the surface potential of charged phospholipid membranes.J. Gen. Physiol. 58:667–687

    Google Scholar 

  • Mozhayeva, G.N., Naumov, A.P. 1972a. Effect of surface charge on stationary potassium conductivity of Ranvier node membrane. I. Change of pH of external solution.Biofizika 17:412–420

    Google Scholar 

  • Mozhayeva, G.N., Naumov, A.P. 1972b. Effect of surface charge on steady potassium conductivity of Ranvier node membrane. II. Change of ionic strength of external solution.Biofizika 17:618–622

    Google Scholar 

  • Mozhayeva, G.N., Naumov, A.P. 1972c. Effect of surface charge on stationary potassium conductance of Ranvier node membrane. III. Effect of divalent anions.Biofizika 17:801–808

    Google Scholar 

  • Nir, S., Newton, C., Papahadjopoulos, D. 1978. Binding of cations to phosphatidylserine vesicles.Bioelectrochem. Bioenerg. 5:116–134

    Google Scholar 

  • Ohki, S. 1978. Ionic conductance and surface potential of axon membranes.Bioelectrochem. Bioenerg. 5:204–214

    Google Scholar 

  • Ohki, S., Kurland, R. 1981. Surface potential of phosphatidylserine monolayers. II. Divalent and monovalent ion binding.Biochim. Biophys. Acta 645:170–176

    Google Scholar 

  • Ohmori, H., Yoshii, M. 1977. Surface potential reflected in both gating and permeation mechanisms of sodium and calcium channels of the tunicate egg cell membrane.J. Physiol. (London) 267:429–463

    Google Scholar 

  • Papahadjopoulos, D. 1968. Surface properties of acidic phospholipids: Interaction of monolayers and hydrated liquid crystals with uni- and bivalent metal ions.Biochim. Biophys. Acta 163:240–254

    Google Scholar 

  • Stern, O. 1924. Theory of a double-electric layer with the consideration of the adsorption processes.Z. Electrochem. 30:508–516

    Google Scholar 

  • Traube, H., Eibl, H. 1974. Electrostatic effects on lipid phase transitions. Membrane structure and ionic environment.Proc. Natl. Acad. Sci. USA 71:214–219

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostyuk, P.G., Mironov, S.L., Doroshenko, P.A. et al. Surface charges on the outer side of mollusc neuron membrane. J. Membrain Biol. 70, 171–179 (1982). https://doi.org/10.1007/BF01870560

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870560

Key Words

Navigation