Skip to main content
Log in

Bicarbonate and fast-twitch muscle: Evidence for a major role in pH regulation

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Internal pH (pHi) was analyzed in rat extensor digitorum longus (Edl) muscle at 30°C with single-barrel liquid ionselective electrodes. Average pHi in 284 cells was 7.197±0.006. Increases in CO2 from nominally 0 to 5% produced an acidification from which recovery took place. In different groups of cells, recovery from the 5% CO2 acidification was significantly inhibited by 100 μm 4,4′ diisothiocyanatostilbene 2,2′ disulfonic acid (DIDS), Cl removal, Na removal and 2mm amiloride. Prepulsing with 20mm NH4 in the presence of CO2/HCO3 typically reduced pHi to only about neutral, whereas 50mm reduced pHi to 6.7–6.8. In the nominal absence of CO2/HCO3, 20mm NH4 reduced pHi to about 6.7 from which recovery took place at about 58% of the rate seen in different cells in the presence of CO2/HCO3. In the presence of CO2/HCO3, cells prepulsed with 50mm NH4 had fully recovered to an average pHi of 7.22±0.04 about 90 min after removal of NH4. However, 90 min after removal of 20mm NH4 in the absence of CO2/HCO3, average pHi was significantly less (7.05±0.03). Intrinsic buffering capacity (β i ) was obtained during pulses of CO2, acetic acid or after an NH4 pulse, β i was significantly reduced in the absence of HCO3, Cl or Na and HCO3. The data provide significant support for an important role of HCO3 in the control of pHi in fast-twitch muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abercrombie, R.F., Putnam, R.W., Roos, A. 1983. The intracellular pH of frog skeletal muscle: Its regulation in isotonic solution.J. Physiol. (London) 345:175–187

    Google Scholar 

  • Aickin, C.C., Brading, A.F. 1984. The role of chloride-bicarbonate exchange in the regulation of intracellular chloride in guinea-pig vas deferens.J. Physiol. (London) 349:587–606

    Google Scholar 

  • Aickin, C.C., Thomas, R.C. 1977a. Microelectrode measurement of the intracellular pH and buffering power of mouse soleus muscle fibres.J. Physiol. (London).267:791–810

    Google Scholar 

  • Aickin, C.C., Thomas, R.C. 1977b. An investigation of the ionic mechanism of intracellular pH regulation in mouse soleus muscle fibres.J. Physiol. (London) 273:295–316

    Google Scholar 

  • Ammann, D., Lanter, F., Steiner, R.A., Schulthess, P., Shijo, V., Simon, W. 1981. Neutral carrier based hydrogen ion selective microelectrodes for extra and intracellular studies.Anal. Chem. 53:2267–2269

    PubMed  Google Scholar 

  • Benos, D.J. 1982. Amiloride: A molecular probe of sodium transport in tissues and cells.Am. J. Physiol. 242:C131-C145

    Google Scholar 

  • Bolton, T.B., Vaughan-Jones, R.D. 1977. Continuous direct measurement of intracellular chloride and pH in frog skeletal muscle.J. Physiol. (London) 270:801–833

    Google Scholar 

  • Boron, W.F., DeWeer, P. 1976. Intracellular pH transients in squid giant axons caused by CO2, NH3, and metabolic inhibitors.J. Gen. Physiol. 67:91–112

    Google Scholar 

  • Boron, W.F., McCormick, W.C., Roos, A. 1979. pH regulation in barnacle muscle fibers: Dependence on intracellular and extracellular pH.Am. J. Physiol. 237:C185-C193

    Google Scholar 

  • Grossie, J. 1982. Contractile and electrical characteristics of extensor muscle from alloxan-diabetic rats: An in vitro study.Diabetes 31:194–202

    PubMed  Google Scholar 

  • Grossie, J. 1985. Effect of bicarbonate on resting potentials in mammlian skeletal muscle.J. Cell. Physiol. 125:115–121

    PubMed  Google Scholar 

  • Harned, H.S., Bonner, F.T. 1945. The first ionization of carbonic acid in aqueous solutions of sodium chloride.J. Am. Chem. Soc. 67:1026–1031

    Google Scholar 

  • Harned, H.S., Davis, R. 1943. The ionization constant of carbonic acid in water and the solubility of carbon dioxide in water and aqueous salt solutions for 0 to 50o.J. Am. Chem. Soc. 65:2030–2037

    Google Scholar 

  • Kenyon, J.L., Gibbons, W.R. 1977 Effects of low chloride solutions on action potentials of sheep cardiac Purkinje fibers.J. Gen. Physiol. 70:635–660

    PubMed  Google Scholar 

  • Kushmerick, M.J. 1987. Energetics studies of muscles of different types.Basic Res. Cardiol. (Suppl. 2)82:17–30

    PubMed  Google Scholar 

  • McKinney, T.D., Burg, M.B. 1978. Bicarbonate absorption by rabbit cortical collecting tubules in vivo.Am. J. Physiol. 234:F141-F145

    PubMed  Google Scholar 

  • Moody, W.J., Jr. 1981. The ionic mechanism of intracellular pH regulation in crayfish neurones.J. Physiol. (London) 316:293–308

    Google Scholar 

  • Mulieri, L.A., Alpert, N. 1984. Differential effects of 2.3-butanedione monoxime (BDM) on activation and contraction.Biophys. J. 45:47a

    Google Scholar 

  • Niederle, B., Mayr, R. 1978. Course of denervation atrophy in type I and type II fibres of rat extensor digitorum longus muscle.Anat. Embryol. 153:9–21

    PubMed  Google Scholar 

  • Paulus, S.F., Grossie, J. 1983. Skeletal muscle in alloxan-diabetes: A comparison of isometric contractions in fast and slow twitch muscle.Diabetes 32:1035–1039

    PubMed  Google Scholar 

  • Putnam, R.W., Roos, A., Wilding, T.J. 1986. Properties of the intracellular pH regulating system of frog skeletal muscle.J. Physiol. (London) 381:205–219

    Google Scholar 

  • Roos, A., Boron, W.F. 1978. Intracellular pH transients in rat diaphragm muscle measured with DMO.Am. J. Physiol. 235:C49-C54

    PubMed  Google Scholar 

  • Russell, J. 1978. Effects of ammonium and bicarbonate-CO2 on intracellular chloride levels inAplysia neurones.Biophys. J. 22:131–137

    PubMed  Google Scholar 

  • Thomas, R.C. 1977. The role of bicarbonate, chloride and sodium ions in the regulation of intracellular pH in snail neurones.J. Physiol. (London) 273:317–338

    Google Scholar 

  • Vanheel, B., Hemptinne, A. de, Leusen, I. 1986. Influence of surface pH on intracellular pH regulation in cardiac and skeletal muscle.Am. J. Physiol. 250:C748-C760

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grossie, J., Collins, C. & Julian, M. Bicarbonate and fast-twitch muscle: Evidence for a major role in pH regulation. J. Membrain Biol. 105, 265–272 (1988). https://doi.org/10.1007/BF01871003

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871003

Key Words

Navigation