Skip to main content
Log in

Metabolic dependence of the offset of antidiuretic hormone-induced osmotic flow of water across the toad urinary bladder

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The elevated osmotic permeability to water induced by antidiuretic hormone (ADH) in the isolated urinary bladder of the toad is rapidly reversed by removal or washout of the ADH. This return to normal water permeability is delayed by the suppression of production of metabolic energy by any of three maneuvers: (i) low temperature (2°C); (ii) inhibition of oxidative phosphorylation (10mm azide or 0.5mm 2,4 dinitrophenol); or (iii) inhibition of glycolysis (10mm iodoacetate or 10mm 2-deoxyglucose). Moreover, exposure to cytochalasin B, 2.1×10−5 m, either before or after initiation of the hormonal effect also delays the return of water permeability to normal following removal of ADH. When considered within constraints imposed by models which predict ADH's action on water permeability to be either via modulation of the fluidity of lipids in the membrane or via the figuration of proteins (“pores”) in the lipid membrane, these observations on the inhibition of the reversal of ADH stimulation of water flow are more consistent with the protein (pore) theory and place limitations on the mechanisms by which proteins in such pores can return to the resting or impermeable state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreoli, T.E., Schafer, S.A. 1976. Mass transport across cell membranes: The effects of antidiuretic hormone on water and solute flows in epithelia.Annu. Rev. Physiol. 38:451

    PubMed  Google Scholar 

  • Axline, S.G., Reaven, E.P. 1974. Inhibition of phagocytosis and plasma membrane mobility of the cultivated macrophage by cytochalasin B.J. Cell Biol. 62:647

    Article  PubMed  Google Scholar 

  • Bentley, P.J. 1958. The effects of neurohypophyseal extracts on water transfer across the wall of the isolated urinary bladder of the toadBufo Marinus.J. Endocrinol. 17:201

    PubMed  Google Scholar 

  • Bourguet, J., Lemonnier, R., Carasso, N., Favard, P., Delaunay, N.D. 1975. Ultrastructure et permeabilite A L'Eua de L'Epithelium isole de la Vessie de grenouille.J. Microsc. Biol. Cell. 23:139

    Google Scholar 

  • Chapman, D. 1975. Phase transitions and fluidity characteristics of lipids and cell membranes. Q. Rev. Biophys.8:185

    Google Scholar 

  • Chevalier, J., Bourguet, J., Hugon, J.S. 1974. Membrane associated particles: Distribution in frog urinary bladder epithelium at rest and after oxytocin treatment.Cell Tissue Res. 152:129

    PubMed  Google Scholar 

  • Civan, M.M., DiBona, D.R. 1974. Pathways for movement of ions and water across toad urinary bladder. II. Site and mode of action of vasopressin.J. Membrane Biol. 19:195

    Article  Google Scholar 

  • Davis, W.L., Goodman, D.B.P., Schuster, R.J., Rasmussen, H., Martin, J.H. 1974. Effects of cytochalasin B on the response of toad urinary bladder to vasopressin.J. Cell Biol. 63:986

    Article  PubMed  Google Scholar 

  • DeSousa, R.C., Grosso, A., Rufener, C. 1974. Blockade of the hydroosmotic effect of vasopressin by cytochalasin B.Experientia 15:177

    Google Scholar 

  • DiBona, D.R., Civan, M.M., Leaf, A. 1969. The cellular specificity of the effect of vasopressin on toad urinary bladder.J. Membrane Biol. 1:79

    Google Scholar 

  • Edelman, I.S., Petersen, M.J., Gulyassy, P.F. 1964. Kinetic analysis of the antidiuretic action of vasopressin and adenosine-3′, 5′-monophosphate.J. Clin. Invest. 43:2185

    PubMed  Google Scholar 

  • Eggena, P. 1972. Temperature dependence of vasopressin action on the toad bladder.J. Gen. Physiol. 59:519

    PubMed  Google Scholar 

  • Finkelstein, A. 1976. Nature of the water permeability increase induced by antidiuretic hormone (ADH) in toad urinary bladder and related tissues.J. Gen. Physiol. 68:137

    PubMed  Google Scholar 

  • Handler, J.S., Orloff, J. 1973. The mechanism of action of antidiuretic hormone.In: Handbook of Physiology, Section 8, Renal Physiology. Chapter 24. American Physiological Society, Washington, D.C.

    Google Scholar 

  • Handler, J.S., Petersen, M., Orloff, J. 1966. Effect of metabolic inhibitors on the response of the toad bladder to vasopressin.Am. J. Physiol. 211:1175

    PubMed  Google Scholar 

  • Hays, R.M., Franki, N., Soberman, R. 1971. Activation energy for water diffusion across the toad bladder. Evidence against the pore enlargment hypothesis.J. Clin. Invest. 50:1016

    PubMed  Google Scholar 

  • Hays, R.M., Leaf, A. 1962. Studies on the movement of water through isolated toad bladder and its modification by vasopressin.J. Gen. Physiol. 45:905

    PubMed  Google Scholar 

  • Kachadorian, W.A., Wade, J.B., DiScala, V.A. 1975. Vasopressin: Induced structural change in toad bladder luminal membrane.Science 190:67

    PubMed  Google Scholar 

  • Leaf, A., Anderson, J., Page, L.B. 1958. Active sodium transport by the isolated toad bladder.J. Gen. Physiol. 41:657

    Google Scholar 

  • Leaf, A., Hays, R.M. 1962. Permeability of the isolated toad bladder to solutes and its modification by vasopressin.J. Gen. Physiol. 45:921

    PubMed  Google Scholar 

  • Masters, B.R., Yguerabide, J., Fanestil, D. 1978. Microviscosity of mucosal cellular membranes in toad urinary bladder. Relation to antidiuretic hormone action on water permeability.J. Membrane Biol. 40:179

    Google Scholar 

  • Pietras, R.J., Wright, E.M. 1975. Non-electrolyte probes of membrane structure in ADH-treated toad urinary bladder.Nature (London) 247:222

    Google Scholar 

  • Schreiner, G.F., Unanue, E.R. 1976. Membrane and cytoplasmic changes in B lymphocytes induced by ligand-surface immunoglobulin interaction.Adv. Immunol. 24:37

    PubMed  Google Scholar 

  • Silverstein, S.C., Steinman, R.M., Cohn, Z.A., 1977. Endocytosis.Annu. Rev. Biochem. 46:669

    Article  PubMed  Google Scholar 

  • Taylor, A., Mamelak, M., Reaven, E., Maffly, R. 1973. Vasopressin: Possible role of microtubules and microfilaments in its action.Science 181:347

    PubMed  Google Scholar 

  • Taylor, A., Maffy, R., Wilson, L., Reaven, E. 1975. Evidence for the involvement of microtubules in the action of vasopressin.Ann. N.Y. Acad. Sci. 253:723

    PubMed  Google Scholar 

  • Wade, J.B., DiScala, V.A., Karnovksy, M.J. 1975. Membrane structural specialization of the toad urinary bladder revealed by the freeze-fracture technique. I. The granular cell.J. Membrane Biol. 22:385

    Article  Google Scholar 

  • Wade, J.B., Kachadorian, W.A., DiScala, V.A. 1977. Freeze-fracture electron microscopy: Relationship of membrane structural features to transport physiology.Am. J. Physiol. 232:F77

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masters, B.R., Fanestil, D.D. Metabolic dependence of the offset of antidiuretic hormone-induced osmotic flow of water across the toad urinary bladder. J. Membrain Biol. 48, 237–247 (1979). https://doi.org/10.1007/BF01872893

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01872893

Keywords

Navigation