Skip to main content
Log in

The effect of sulfide on the blue-green algae of hot springs II. Yellowstone National Park

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

In the Mammoth Springs (Yellowstone National Park) waters with near neutral pH and soluble sulfide (H2S, HS, S2−) of over 1–2 mg/liter (30–60ΜM) are characterized by substrate covers of phototrophic bacteria (Chloroflexus and aChlorobium-like unicell) above 50‡C and by a blue-green alga (Spirulina labyrinthiformis) below this temperature.Synechococcus. Mastigocladus, and other blue-green algae typical of most hot springs of western North America are excluded, apparently by sulfide. The sulfide-adaptedSpirulina photosynthesized at maximum rates at 45‡C and at approximately 300 to 700ΜEin/m2/sec of “visible” radiation. Sulfide (0.6–1.2 mM) severely poisoned photosynthesis of nonadapted populations, but those continuously exposed to over 30ΜM tolerated at least 1 mM without inhibition. A normal14C-HCO3 photoincorporation rate was sustained with 0.6–1 mM sulfide in the presence of DCMU (7ΜM) or NH2OH (0.2 mM), although both of these photosystem II inhibitors prevented photoincorporation without sulfide. Other sulfur-containing compounds (S2O3 2− SO3 2−, S2O4 2− thioglycolic acid cysteine) were unable to relieve DCMU inhibition. The lowering of the photoincorporation rate by preferentially irradiating photosystem I was also relieved by sulfide. The most tenable explanation of these results is that sulfide is used as a photo-reductant of CO2, at least when photosystem II is inhibited. It is suggested that in some blue-green algae photosystem II is poisoned by a low sulfide concentration, thus making these algae sulfidedependent if they are to continue photosynthesizing in a sulfide environment. Presumably a sulfidecytochrome reductase enzyme system must be synthesized for sulfide to be used as a photo-reductant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, E. T. and Day, A. L. 1935. Hot springs of the Yellowstone National Park.Carnegie Inst. Wash. Publ. No. 466, 525 pp.

  2. Anagnostidis, K. And Golubić, S. 1966. über die ökologie einiger Spirulina-Arten.Nova Hedwigia 11: 309–333.

    Google Scholar 

  3. Bargar, K. E. and Muffler, L. J. P. 1975. Geologic map of the travertine deposits, Mammoth Hot Springs, Yellowstone National Park, Wyoming. Miscell. Field Studies Map MF-659, U. S. Geol. Survey, Wash. D. C.

    Google Scholar 

  4. Brock, T. D. 1973. Lower pH limit for the existence of blue-green algae: Evolutionary and ecological implications.Science 179: 480–482.

    PubMed  Google Scholar 

  5. Castenholz, R. W. 1969. Thermophilic blue-green algae and the thermal environment.Bacteriol. Rev. 33: 476–504.

    PubMed  Google Scholar 

  6. Castenholz, R. W. 1970. Laboratory culture of thermophilic cyanophytes.Schweiz. Z. Hydrol. 32: 538–551.

    Google Scholar 

  7. Castenholz, R. W. 1972. Low temperature acclimation and survival in thermophilicOscillatoria terebriformis. pp. 406–418.In: Taxonomy and Biology of Blue-green Algae. T. V. Desikachary, editor. University of Madras.

  8. Castenholz, R. W. 1973a. Ecology of blue-green algae in hot springs, pp. 379–414.In: The Biology of Blue-green Algae. N. G. Carr and B. A. Whitton, editors. Blackwell, London.

    Google Scholar 

  9. Castenholz, R. W. 1973b. The possible photosynthetic use of sulfide by the filamentous phototrophic bacteria of hot springs.Limnol. & Oceanogr. 18: 863–876.

    Google Scholar 

  10. Castenholz, R. W. 1976. The effect of sulfide on the blue-green algae of hot springs. I.New Zealand and Iceland. J. Phycol. 12: 54–68.

    Google Scholar 

  11. Cheniae, G. M. and Martin, I. F. 1972. Effects of hydroxylamine on photosystem II. II. Photoreversal of the NH2OH destruction of O2 evolution. Plant Physiol.50: 87–94.

    Google Scholar 

  12. Cohen, Y., Padan, E., and Shilo, M. 1975a. Facultative anoxygenic photosynthesis in the cyanobacteriumOscillatoria limnetica.J. Bacteriol. 123: 855–861.

    PubMed  Google Scholar 

  13. Cohen, Y., JØrgensen, B. B., Padan, E., and Shilo, M. 1975b. Sulphide-dependent anoxygenic photosynthesis in the cyanobacteriumOscillatoria limnetica.Nature 257: 489–492.

    Article  Google Scholar 

  14. Doemel, W. N. and Brock, T. D. 1970. The upper temperature limit ofCyanidium caldarium.Arch. Mikrobiol. 72: 326–332.

    PubMed  Google Scholar 

  15. Knaff, D. B., Buchanan, B. B., and Malkin, R. 1973. Effect of oxidation-reduction potential on light-induced cytochrome and bacteriochlorophyll reactions in chromatophores from the photosynthetic green bacteriumChlorobium.Biochim. Biophys. Acta 325: 94–101.

    PubMed  Google Scholar 

  16. Knobloch, K. 1966a. Photosynthetische Sulfid-Oxydation grüner Pflanzen. I.Mitteilung. Planta (Berl.) 70: 73–86.

    Google Scholar 

  17. Knobloch, K. 1966b. Photosynthetische Sulfid-Oxidation grüner Pflanzen. II.Mitteilung. Planta (Berl.) 70:172–186.

    Google Scholar 

  18. Kratz, W. A. and Myers, J. 1955. Photosynthesis and respiration of three blue-green algae.Plant Physiol. 30: 275–280.

    Google Scholar 

  19. Kusai, K. and Yamanaka, T. 1973a. The oxidation mechanisms of thiosulphate and sulfide inChlorubium thiosulphatophilum: Roles of cytochrome c-551 and cytochrome c-553.Biochim. Biophys. Acta 325: 304–314.

    PubMed  Google Scholar 

  20. Kusai, A. and Yamanaka, T. 1973b. Cytochrome c (553,Chlorobium thiosulfatophilum) is a sulfide-cytochrome c reductase.FEBS Letters 34: 235–237.

    Article  PubMed  Google Scholar 

  21. Kusai, A. and Yamanaka, T. 1973c. A novel function of cytochrome c (555,Chlorobium thiosulfatophilum) in oxidation of thiosulfate.Biochem. Biophys. Res. Commun. 51: 107–112.

    Article  PubMed  Google Scholar 

  22. Lemasson, C., Tandeau de Marsac, N., and Cohen-Barzire, G. 1973. Role of allophycocyanin as a light-harvesting pigment in cyanobacteria.Proc. Nat. Acad. Sci. USA 70: 3130–3133.

    Google Scholar 

  23. Lenz, J. and Zeitzschel, B. 1968. Zur Bestimmung des Extinktionskoeffizienten für Chlorophyll a in Methanol.Kieler Meeres-Forschungen 24: 41–50.

    Google Scholar 

  24. Madigan, M. T. and Brock, T. D. 1975. Photosynthetic sulfide oxidation byChloroftexus aurantiacus, a filamentous, photosynthetic, gliding bacterium.J. Bacteriol. 122: 782–784.

    PubMed  Google Scholar 

  25. Meeks, J. C. and Castenholz, R. W. 1971. Growth and photosynthesis in an extreme thermophile,Synechococcus lividus (Cyanophyta). Arch.Mikrobiol. 78: 25–41.

    Article  PubMed  Google Scholar 

  26. Meyer, T. E., Bartsch, R. G., Cusanovich, M. A., and Mathewson, J. H. 1968. The cytochromesof Chlorobium thiosulfatophilum.Biochim. Biophys. Acta 153: 854–861.

    PubMed  Google Scholar 

  27. Myers, J. and Kratz, W. A. 1955. Relations between pigment content and photosynthetic characteristics in a blue-green alga.J. Gen. Physiol. 39: 11–22.

    Article  PubMed  Google Scholar 

  28. Peary, J. and Castenholz, R. W. 1964. Temperature strains of a thermophilic blue-green alga.Nature 202: 720–721.

    Google Scholar 

  29. Pfennig, N. and Trüper, H.G. 1974. The phototrophic bacteria, pp. 24–64.In: Bergey's Manual of Determinative Bacteriology. R. E. Buchanan and N. E. Gibbons, editors. Williams & Wilkins, Baltimore.

    Google Scholar 

  30. Pickett, J. M. and Myers, J. 1966. Monochromatic light saturation curves for photosynthesis inChlorella.Plant Physiol. 41: 90–98.

    PubMed  Google Scholar 

  31. Pierson, B. K. and Castenholz, R. W.1971. Bacteriochlorophylls in gliding, filamentous prokaryotes from hot springs.Nature 233: 25–27.

    Article  PubMed  Google Scholar 

  32. Pierson, B. K. and Castenholz, R. W. 1974a. A phototrophic gliding filamentous bacterium of hot springs,Chloroflexus aurantiacus, gen. and sp. nov.Arch. Mikrobiol. 100: 5–24.

    Google Scholar 

  33. Pierson, B. K. and Castenholz, R. W. 1974b. Studies of pigments and growth inChloroflexus aurantiacus, a phototrophic filamentous bacterium.Arch. Mikrobiol. 100: 283–305.

    Google Scholar 

  34. Rowe, J. J., Fournier, R. O., and Morey, G. W. 1973. Chemical analysis of thermal waters in Yellowstone National Park, Wyoming, 1960–65.Geological Survey Bull. 1303.

  35. Sistrom, W. R. and Clayton, R. K. 1964. Studies on a mutant ofRhodopseudomonas spheroides unable to grow photosynthetically.Biochim. Biophys. Acta 88: 61–73.

    PubMed  Google Scholar 

  36. Stewart, W. D. P. and Pearson, H. W. 1970. Effects of aerobic and anaerobic conditions on growth and metabolism of blue-green algae.Proc. Roy. Soc. London B 175: 293–311.

    Google Scholar 

  37. Weller, D., Doemel, W., and Brock, T. D. 1975. Requirement of low oxidation potential for photosynthesis in a blue-green alga (Phormidium sp.).Arch Mikrobiol. 104: 7–13.

    Google Scholar 

  38. White, D. E., Hem, J. D., and Waring, G. A. 1963. Chemical composition of subsurface waters.U. S. Geological Survey Prof. Paper 440-F.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castenholz, R.W. The effect of sulfide on the blue-green algae of hot springs II. Yellowstone National Park. Microb Ecol 3, 79–105 (1977). https://doi.org/10.1007/BF02010399

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02010399

Keywords

Navigation