Skip to main content
Log in

Natural variation of toxicity in encrusting spongeCrambe crambe (Schmidt) in relation to size and environment

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The presence of intraspecific variation in toxicity and its relationship with biological or ecological factors were studied in the spongeCrambe crambe. Within-specimen (periphery and central part), between-size (<1000 mm2 in area, between 1000 and 10,000 mm2 and >10,000 mm2) and between-habitat (well-illuminated and dark communities) variations in toxicity were evaluated by the Microtox bioassay. Quantitative differences were detected that were not attributable to within-specimen variation but to size and habitat effects. Habitat comparisons showed that sponges in the shaded habitat were significantly more toxic than those of the well-illuminated community. Sponges of the smaller size classes displayed significantly less toxicity than the medium-sized specimens. Results are interpreted under the optimal defense theory and their ecological implications are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, F.R., andHarvell, C.D. 1993. Inducible defenses, phenotypic variability and biotic environments.Tree 5:407–410.

    Google Scholar 

  • Bakus, G.J. 1990. Quantitative ecology and marine biology. A.A. Balkema, Rotterdam.

    Google Scholar 

  • Bakus, G.J., Targett, N.M., andSchulte, B. 1986. Chemical ecology of marine organisms: An overview.J. Chem. Ecol. 12:951–985.

    Article  Google Scholar 

  • Basey, J.M., andJenkins, S.H. 1993. Production of chemical defenses in relation to plant growth rate.Oikos 68:323–338.

    Google Scholar 

  • Becerro, M.A. 1994. Chemically mediated bioactivity of the encrusting spongeCrambe crambe and its ecological implications. PhD thesis. University of Barcelona.

  • Becerro, M.A., Löpez, N.I., Turon, X., andUriz, M.J. 1994a. Antimicrobial activity and surface film in marine sponges.J. Exp. Mar. Biol. Ecol. 179:195–205.

    Article  Google Scholar 

  • Becerro, M.A., Uriz, M.J., andTuron, X. 1994b. Trends in space occupation by the encrusting spongeCrambe crambe: Variation in shape as a function of size and environment.Mar. Biol. 121:301–307.

    Article  Google Scholar 

  • Becerro, M.A., Uriz, M.J., andTuron, X. 1995. Measuring toxicity in marine environments: A critical appraisal of three commonly used methods.Experientia 51:414–418.

    Article  Google Scholar 

  • Bennington, C.C., andThayne, W.V. 1994. Use and misuse of mixed model analysis of variance in ecological studies.Ecology 75(3):717–722.

    Google Scholar 

  • Berenbaum, M., andJ.J. Neal. 1985. Synergisms between myristicin and xanthotonin, naturally cooccurring plant toxicants.J. Chem. Ecol. 11:1349–1358.

    Article  Google Scholar 

  • Berlinck, R.G.S., Braeckman, J.C., Bruno, I., Daloze, D., Pem, S., Riccio, R., Spampinato, S., andSperoni, E. 1990. Two new guanidine alkaloids from the Mediterranean spongeCrambe crambe.Tetraedron Lett. 31:6531–6534.

    Article  Google Scholar 

  • Berlinck, R.G.S., Braeckman, J.C., Daloze, D., Bruno, I., Riccio, R., Rogeau, D., andAmade, P. 1992. Crambines C1 and C2: Two further ichthyotoxic guanidine alkaloids from the spongeCrambe crambe.J. Nat. Prod. 55:528–532.

    Article  Google Scholar 

  • Carral, E., Reigosa, M.J., andCarballeira, A. 1988.Rumex obtusifolius L: distribution of meadow species.J. Chem. Ecol. 14:1763–1773.

    Article  Google Scholar 

  • Coley, P.D., Bryant, J.P., andChapin, F.S. 1985. Resource availability and plant antiherbivory defense.Science 230:895–899.

    Google Scholar 

  • Coll, J.C. 1992. The chemistry and chemical ecology of octocorals (Coelenterata, Anthozoa, Octocorallia).Chem. Rev. 92:613–631.

    Article  Google Scholar 

  • Coll, J.C., Bowden, B.F., Tapiolas, D.M., andDunlap, W.C. 1982. In situ isolation of allelochemicals released from soft corals (Coelenterata; Octocorallia): A totally submersible sampling apparatus.J. Exp. Mar. Biol. Ecol. 60:293–299.

    Article  Google Scholar 

  • Davis, A.R., Targett, N.M., McConnell, O.J., andYoung, C.M. 1989. Epibiosis of marine algae and benthic invertebrates: Natural products chemistry and other mechanisms inhibiting settlement and overgrowth.Bioorg. Mar. Chem. 3:85–114.

    Google Scholar 

  • Davis, A.R., Butler, J., andvan Altena, I. 1991. Settlement behavior of ascidian larvae: Preliminary evidence for inhibition by sponge allelochemicals.Mar. Ecol. Prog. Ser. 72:117–123.

    Google Scholar 

  • Day, R.W., andQuinn, G.P. 1989. Comparisons of treatments after an analysis of variance in ecology.Ecol. Monogr. 59(4):433–463.

    Google Scholar 

  • Einot, I., andGabriel, K.R. 1975. A study of the power of several methods of multiple comparisons.J. Am. Stat. Assoc. 70:574–583.

    Google Scholar 

  • Fagerström, T., Larsson, S., andTenow, O. 1987. On optimal defence theory in plants.Funct. Ecol. 1:73–81.

    Google Scholar 

  • Faulkner, D.J. 1984. Marine natural products: Metabolites of marine invertebrates.Nat. Prod. Rep. 2:551–598.

    Article  Google Scholar 

  • Faulkner, D.J. 1986. Marine natural products.Nat. Prod. Rep. 1:1–86.

    Article  Google Scholar 

  • Faulkner, D.J. 1991. Marine natural products.Nat. Prod. Rep. 8:97–147.

    Article  PubMed  Google Scholar 

  • Fautin, D.J. 1988. Biomedical importance of marine organisms.Mem. Cal. Acad. Sci. 13:1–236.

    Google Scholar 

  • Feeny, P.P. 1976. Plant apparency and chemical defenses.Recent Adv. Phytochem. 10:1–41.

    Google Scholar 

  • Hall, S., andStrichartz, G. 1990. Marine Toxins. Origin, Structure, and Molecular Pharmacology. American Chemical Society, Washington, D.C.

    Google Scholar 

  • Harborne, J.B. 1988. Introduction to Ecological Biochemistry, 2nd ed. Academic Press, London.

    Google Scholar 

  • Harvell, C.D. 1986. The ecology and evolution of inducible defenses in a marine bryozoan: cues, costs, and consequences.Am. Nat. 128:810–823.

    Article  Google Scholar 

  • Harvell, C.D., andFenical, W. 1989. Chemical and structural defenses of Caribbean gorgonians (Pseudopterogorgia spp.). I. Development of an in situ feeding assay.Mar. Ecol. Prog. Ser. 49:287–294.

    Google Scholar 

  • Harvell, C.D., Fenical, W., Roussis, V., Ruesink, J.L., Griggs, C.C., andGreene, C.H. 1993. Local and geographic variation in the defensive chemistry of a west Indian gorgonian coral (Briaerum asbestinum).Mar. Ecol. Prog. Ser. 20:273–287.

    Google Scholar 

  • Hay, M.E., Paul, V.J., Leiws, S.M., Gustafson, K., andTucker, J. 1988. Can tropical seaweeds reduce herbivory by growing at night? Diel patterns of growth, nitrogen contents, herbivory and chemical versus morphological defenses.Oecologia 75:233–245.

    Article  Google Scholar 

  • Jackson, J.B.C. 1977. Competition on marine hard substrata: The adaptive significance of solitary and colonial strategies.Am. Nat. 11(980):743–767.

    Article  Google Scholar 

  • Jares-Erijman, E.A., Sakai, R., andRinehart, K.L. 1991. Crambescidins: New antiviral and cytotoxic compounds from the spongeCrambe crambe.J. Org. Chem. 56:5712–5715.

    Article  Google Scholar 

  • Kaiser, K.L., andRibo, J.M. 1988.Photobacterium phosphoreum toxicity bioassay. II. Toxicity data compilation.Tox. Assess. 3:195–237.

    Google Scholar 

  • Maida, M., Carroll, A.R., andColl, J.C. 1993. Variability of terpene content in the soft coralSinularia flexibilis (Coelenterata: Octocorallia), and its ecological implications.J. Chem. Ecol. 19(10):2285–2296.

    Article  Google Scholar 

  • Martin, D., andUriz, M.J. 1993. Chemical bioactivity of Mediterranean benthic organisms against embryos and larvae of marine invertebrates.J. Exp. Mar. Biol. Ecol. 173:11–27.

    Article  Google Scholar 

  • McKey, D., Waterman, P.G., Mbi, C.N., Gartlan, J.S., andStruhsaker, T.T. 1978. Phenolic content of vegetation in two African rain forests: Ecological implications.Science 202:61–64.

    Google Scholar 

  • Moon, R.E., andMartin, D.F. 1985. Allelopathic substances from a marine alga (Nannochloris sp.), pp. 371–380,in A.C. Tompson (ed.). The Chemistry of Allelopathy. Biochemical Interactions among Plants. ACS Symposium Series 268. American Chemical Society, Washington, D.C.

    Google Scholar 

  • Paul, V.J., andVan Alystne, K.L. 1988. Chemical defense and chemical variation in some tropical Pacific species ofHalimeda (Halimedaceae, chlorophyta).Coral Reefs 6:263–269.

    Article  Google Scholar 

  • Pawlik, J.R., Burch, M.T., andFenical, W. 1987. Patterns of chemical defense among Caribbean gorgonian corals: A preliminary survey.J. Exp. Mar. Biol. Ecol. 108:55–66.

    Article  Google Scholar 

  • Porter, J.M., andTarget, W.M. 1988. Allelochemical interactions between sponges and corals.Biol. Bull. 175:230–239.

    Google Scholar 

  • Potvin, C., andRoff, D.A. 1993. Distribution-free and robust statistical methods: Viable alternatives to parametric statistics?Ecology 74:1617–1628.

    Google Scholar 

  • Rhoades, D.F. 1979. Evolution of plant chemical defence against herbivores, pp. 3–54,in G.A. Rosenthal, and D.H. Janzen, (eds.). Herbivores: Their Interaction with Secondary Plant Metabolites. Academic Press, New York.

    Google Scholar 

  • Rhoades, D.F., andCates, R.G. 1976. Toward a general theory of plant antiherbivore chemistry, pp. 168–213,in J.W. Wallace, and R.L. Mansell (eds.). Biochemical Interactions between Plants and Insects. Recent Advances in Phytochemistry, Vol. 10. Plenum publishing, New York.

    Google Scholar 

  • Ribo, J.M., andKaiser, K.L.E. 1987.Photobacterium phosphoreum toxicity bioassay. I. Test methods and procedures.Tox. Assess. 2:305–323.

    Google Scholar 

  • Rice, E.L. 1984. Allelopathy, 2nd ed. Academic Press, Orlando.

    Google Scholar 

  • Russ, G.R. 1982. Overgrowth in a marine epifaunal community: Competitive hierarchies and competitive networks.Oecologia, 53:12–19.

    Article  Google Scholar 

  • Sammarco, P.W., Coll, J.C., andLa Barre, S. 1983. Competitive strategies of soft corals (Coelenterata: Octocorallia): Allelopathic effects on select scleractinian corals.Coral Reefs 1:173–178.

    Article  Google Scholar 

  • Sebens, K.P. 1987. The ecology of indeterminate growth in animalsAnnu.Rev. Ecol. Syst. 18:371–407.

    Article  Google Scholar 

  • Skogsmyr, I., andFagerström, T. 1992. The cost of anti-herbivory defence: An evaluation of some ecological and physiological factors.Oikos 64:451–457.

    Google Scholar 

  • Stowe, L.G. 1979. Allelopathy and its influence on the distribution of plants in an Illinois old-field.J. Ecol. 67:1065–1085.

    Google Scholar 

  • Sullivan, B., Faulkner, D.J., andWebb, L. 1983. Siphonodictine, a metabolite of the burrowing spongeSiphonodictyon sp. that inhibits coral growth.Science 221:1175–1176.

    Google Scholar 

  • Thompson, J.E., Walker, R.P., andFaulkner, D.J. 1985. Screening and bioassays for biologically active substances from forty marine species from San Diego, California, USA.Mar. Biol. 88:11–21.

    Article  Google Scholar 

  • Thompson, J.E., Murphy, P.T., Bergquist, P.R., andEvans, E.A. 1987. Environmentally induced variation in diterpene composition of the marine spongeRhopaloeides odorabile.Biochem. Syst. Ecol. 15:595–606.

    Article  Google Scholar 

  • Turon, X., andBecerro, M.A. 1992. Growth and survival of several ascidian species from the northwestern Mediterranean.Mar. Ecol. Progr. Ser. 82:235–247.

    Google Scholar 

  • Uriz, M.J., Turon, X., Becerro, M.A., Galera, J., andLozano, J. 1995. Patterns of resource allocation to somatic, defensive and reproductive functions in the Mediterranean encrusting spongeCrambe crambe.Mar. Ecol. Progr. Ser. 124:159–170.

    Google Scholar 

  • Wahl, M. 1989. Marine epibiosis. I. Fouling and antifouling: Some basic aspects.Mar. Ecol. Progr. Ser. 58:175–189.

    Google Scholar 

  • Wylie, C.R., andPaul, V.J. 1989. Chemical defenses in three species ofSinularia (Coelenterata, Alcyonacea): Effects against generalist predators and the butterflyfishChaetodon unimaculatus Bloch.J. Exp. Mar. Biol. Ecol. 129:141–160.

    Article  Google Scholar 

  • Yates, J.L., andP. Peckol. 1993. Effects of nutrient availability and herbivory on polyphenolics in the seaweedFucus vesiculosus.Ecology 74:1757–1766.

    Google Scholar 

  • Zar, J.H. 1984. Biostatistical Analysis, 2nd ed. Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becerro, M.A., Turon, X. & Uriz, M.J. Natural variation of toxicity in encrusting spongeCrambe crambe (Schmidt) in relation to size and environment. J Chem Ecol 21, 1931–1946 (1995). https://doi.org/10.1007/BF02033853

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02033853

Key Words

Navigation