Skip to main content
Log in

Nondemolition principle of quantum measurement theory

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We give an explicit axiomatic formulation of the quantum measurement theory which is free of the projection postulate. It is based on the generalized nondemolition principle applicable also to the unsharp, continuous-spectrum and continuous-in-time observations. The “collapsed state-vector” after the “objectification” is simply treated as a random vector of the a posterioristate given by the quantum filtering, i.e., the conditioning of the a prioriinduced state on the corresponding reduced algebra. The nonlinear phenomenological equation of “continuous spontaneous localization” has been derived from the Schrödinger equation as a case of the quantum filtering equation for the diffusive nondemolition measurement. The quantum theory of measurement and filtering suggests also another type of the stochastic equation for the dynamical theory of continuous reduction, corresponding to the counting nondemolition measurement, which is more relevant for the quantum experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Ludwig,Math. Phys. 4, 331 (1967);9, 1 (1968).

    MATH  ADS  MathSciNet  Google Scholar 

  2. E. B. Davies and J. Lewis,Commun. Math. Phys. 17, 239–260 (1970).

    MATH  ADS  MathSciNet  Google Scholar 

  3. L. E. Ballentine,Rev. Mod. Phys. 42, 358–381 (1970).

    MATH  ADS  Google Scholar 

  4. A. Shimony,Phys. Rev. D 9, 2321–2323 (1974).

    ADS  Google Scholar 

  5. V. P. Belavkin, “Optimal linear random filtration of quantum boson signals,”Probl. Control Inform. Theory 3, 47–62 (1974).

    MATH  MathSciNet  Google Scholar 

  6. V. P. Belavkin, “Optimal quantum filtration of Markovian signals,”Probl. Control Inform. Theory 7(5), 345–360 (1978).

    MathSciNet  Google Scholar 

  7. V. P. Belavkin, Optimal filtering of Markov signals with quantum noise,Radio Eng. Electron. Phys. 25, 1445–1453 (1980).

    MathSciNet  Google Scholar 

  8. A. Barchielli, L. Lanz, and G. M. Prosperi,Nuovo Cimento B 72, 79 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  9. V. P. Belavkin, “Theory of control of observable quantum systems,”Autom. Remote Control 44(2), 178–188 (1983).

    MATH  MathSciNet  Google Scholar 

  10. A. Peres,Am. J. Phys. 52, 644 (1984).

    ADS  Google Scholar 

  11. R. L. Stratonovich,Conditional Markov Processes and Their Applications to Optimal Control, Moscow University Press, Moscow (1966).

    Google Scholar 

  12. R. E. Kalman and R. S. Bucy, “New results in linear filtering theory and prediction problems,”J. Basic Eng. Trans. ASME 83, 95–108 (1961).

    MathSciNet  Google Scholar 

  13. V. P. Belavkin, “Nondemolition measurement and control in quantum dynamical systems,” in A. Blaquiere, ed.,Proceedings, CISM seminar on Inform. Compl. and Control in Quantum Physics, Udine 1985 (Springer, Wien, 1987), pp. 311–339.

    Google Scholar 

  14. V. P. Belavkin, “Nondemolition measurements, nonlinear filtering, and dynamical programming of quantum stochastic processes,” in A. Blaquiere, ed.,Proceedings, Bellmann Continuum Workshop “Modelling and Control of Systems,”Sophia-Antipolis 1988 (Lecture Notes on Control and Information Science 121) (Springer, Berlin, 1988).

    Google Scholar 

  15. L. E. Ballentine,Int. J. Theor. Phys. 27, 211–218 (1987).

    Google Scholar 

  16. P. Pearle,Phys. Rev. D 29, 235 (1984).

    ADS  MathSciNet  Google Scholar 

  17. N. Gisen,J. Phys. A: Math. Gen. 19, 205–210 (1986).

    ADS  Google Scholar 

  18. L. Diosi,Phys. Rev. A 40, 1165–1174 (1988).

    ADS  Google Scholar 

  19. G. C. Ghirardi, A. Rimini, and T. Weber,Phys. Rev. D 34(2), 470–491 (1986).

    ADS  MathSciNet  Google Scholar 

  20. G. C. Ghirardi, P. Pearle, and A. Rimini,Phys. Rev. A 42, 478–489 (1990).

    ADS  MathSciNet  Google Scholar 

  21. V. P. Belavkin, “A new wave equation for a continuous nondemolition measurement,”Phys. Lett. A 140, 355–358 (1989).

    ADS  MathSciNet  Google Scholar 

  22. V. P. Belavkin and P. Staszewski, “A quantum particle undergoing continuous observation,”Phys. Lett. A 140, 359–362 (1989).

    ADS  MathSciNet  Google Scholar 

  23. V. P. Belavkin, “A posterior Schrödinger equation for continuous nondemolition measurement,”J. Math. Phys. 31(12), 2930–2934 (1990).

    MATH  ADS  MathSciNet  Google Scholar 

  24. V. P. Belavkin and P. Staszewski, “Nondemolition observation of a free quantum particle,”Phys. Rev. A 45(3), 1347–1356 (1992).

    ADS  Google Scholar 

  25. V. P. Belavkin, “Quantum continual measurements anda posteriori collapse on CCR,”Commun. Math. Phys. 146, 611–635 (1992).

    MATH  ADS  MathSciNet  Google Scholar 

  26. V. P. Belavkin, A continuous counting observation and posterior quantum dynamics,J. Phys. A: Math. Gen. 22, L1109–1114 (1989).

    ADS  MathSciNet  Google Scholar 

  27. V. P. Belavkin, “A stochastic posterior Schrödinger equation for counting nondemolition measurement,”Lett. Math. Phys. 20, 85–89 (1990).

    MATH  ADS  MathSciNet  Google Scholar 

  28. V. P. Belavkin and P. Staszewski,Rep. Math. Phys. 29, 213–225 (1991).

    MATH  ADS  MathSciNet  Google Scholar 

  29. V. P. Belavkin, “Stochastic posterior equations for quantum nonlinear filtering,”Probabilitv Theory and Mathematical Statistics, B. Grigelionis, ed., (VSP/Mokslas, Vilnius, 1990), Vol. 1, pp. 91–109.

    Google Scholar 

  30. A. Barchielli and V. P. Belavkin, “Measurements continuous in time anda posteriori states in quantum mechanics,”J. Phys. A: Math. Gen. 24, 1495–1514 (1991).

    ADS  MathSciNet  Google Scholar 

  31. V. P. Belavkin, “Quantum stochastic calculus and quantum nonlinear filtering,”J. Multivar. Anal. 42(2), 171–201 (1992).

    MATH  ADS  MathSciNet  Google Scholar 

  32. V. B. Braginski, Y. I. Vorontzov, and F. J. Halili,Sov. Phys.-JETP 46(2), 765;46(4), 171–201 (1977).

    Google Scholar 

  33. K. S. Thorne, R. W. P. Drever, C. M. Caves, M. Zimmermann, and V. D. Sandberg,Phys. Rev. Lett. 40, 667 (1978).

    ADS  Google Scholar 

  34. A. S. Holevo, “Quantum estimation,”Adv. Stat. Signal Process. 1, 157–202 (1987).

    Google Scholar 

  35. V. P. Belavkin, “Reconstruction theorem for quantum stochastic processes,”Theor. Math. Phys. 3, 409–431 (1985).

    Google Scholar 

  36. K. Kraus,States, Effects, and Operations (Springer, Berlin, 1983).

    MATH  Google Scholar 

  37. E. B. Ozawa,J. Math. Phys. 25, 79–87 (1984).

    ADS  MathSciNet  Google Scholar 

  38. A. Barchielli and G. Lupieri,J. Math. Phys. 26, 2222–2230 (1985).

    MATH  ADS  MathSciNet  Google Scholar 

  39. L. Accardi, R. Alicki, A. Frigerio, and Y. G. Lu, “An invitation to weak coupling and low density limits,”Quantum Probability and Related Topics VI, L. Accardi, ed. (World Scientific, Singapore, 1991).

    Google Scholar 

  40. P. Busch, P. J. Lahti, and P. Mittelstaedt,The Quantum Theory of Measurement (Springer, Berlin, 1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belavkin, V.P. Nondemolition principle of quantum measurement theory. Found Phys 24, 685–714 (1994). https://doi.org/10.1007/BF02054669

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02054669

Keywords

Navigation