Skip to main content
Log in

Wavelet bases for a set of commuting unitary operators

  • Articles
  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Let (U=U 1, ...,U d ) be an orderedd-tuple of distinct, pairwise commuting, unitary operators on a complex Hilbert space ℋ, and letX:={x 1, ...,x r } ⊂ ℋ such that\(U^{\mathbb{Z}^d } X: = \{ U_1^{n_1 } \ldots U_d^{n_d } x_j :(n_1 , \ldots ,n_d ) \in \mathbb{Z}^d ,j = 1, \ldots ,r\} \) is a Riesz basis of the closed linear spanV 0 of\(U^{\mathbb{Z}^d } X\). Suppose there is unitary operatorD on ℋ such thatV 0D V 0 =:V 1 andU n D=DU An for alln ∈ ℤd, whereA is ad ×d matrix with integer entries and Δ := det(A) ≠ 0. Then there is a subset Λ inV 1, withr(Δ − 1) vectors, such that\(U^{\mathbb{Z}^d } (\Gamma )\) is a Riesz basis ofW 0, the orthogonal complement ofV 0 inV 1. The resulting multiscale and decomposition relations can be expressed in a Fourier representation by one single equation, in terms of which the duality principle follows easily. These results are a consequence of an extension, to a set of commuting unitary operators, of Robertson's Theorems on wandering subspace for a single unitary operator [24]. Conditions are given in order that\(U^{\mathbb{Z}^d } (\Gamma )\) is a Riesz basis ofW 0. They are used in the construction of a class of linear spline wavelets on a four-direction mesh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Beylkin, R. Coifman and V. Rokhlin, Fast wavelet transforms and numerical algorithms I, Comm. Pure Appl. Math. 44(1991)141–183.

    Google Scholar 

  2. C. de Boor, R. DeVore and A. Ron, On the construction of multivariate (pre) wavelets, CMS-TRS University of Wisconsin-Madison 92-9 (1992).

  3. K.C. Chui and J.-Z. Wang, A cardinal spline approach to wavelets, Proc. Amer. Math. Soc. 113(1991)785–793.

    Google Scholar 

  4. K.C. Chui and J.-Z. Wang, On compactly supported spline wavelets and a duality principle, Trans. Amer. Math. Soc. 330(1992)903–915.

    Google Scholar 

  5. K.C. Chui, J. Stöckler and J.D. Ward, Compactly supported box-spline wavelets, Approx. Theory Appl. 8(1992)77–100.

    Google Scholar 

  6. I. Daubechies, Orthonormal bases of compactly supported wavelet, Comm. Pure Appl. Math. 41(1988)909–996.

    Google Scholar 

  7. T.N.T. Goodman, S.L. Lee and W.S. Tang, Wavelets in wandering subspaces, Trans. Amer. Math. Soc., to appear.

  8. T.N.T. Goodman and S.L. Lee, Wavelets of multiplicityr, Applied Analysis Report, AA/921, February 1992, University of Dundee.

  9. P.R. Halmos,A Hilbert Space Problem Book, 2nd ed. (Springer, 1982).

  10. N. Jacobson,Basic Algebra (W.H. Freeman, 1973).

  11. S. Jaffard and Y. Meyer, Bases d'ondelettes dans des ouverts de ∝n, J. de Math. Pures et Appl. 68(1989)95–108.

    Google Scholar 

  12. R.Q. Jia and C.A. Micchelli, Using the refinement equation of the construction of pre-wavelets II: Powers of two, in:Curves and Surfaces, ed. P.J. Laurent, A. Le Méhauté and L.L. Schumaker (Academic Press, New York, 1991) pp. 209–246.

    Google Scholar 

  13. R.Q. Jia and C.A. Micchelli, Using the refinement for the construction of pre-wavelets V: Extensibility of trigonometric polynomials, Computing 48(1992)61–72.

    Google Scholar 

  14. R.Q. Jia and Z.W. Shen, Multiresolution and wavelets, Preprint.

  15. S.L. Lee, H.H. Tan and W.S. Tang, Wavelet bases for a unitary operator, Preprint.

  16. P.G. Lemarié, Ondelettes á localisation exponentielles, J. de Math. Pures et Appl. 67(1988)227–236.

    Google Scholar 

  17. P.G. Lemarié and Y. Meyer, Ondelettes et bases hilbertiennes, Rev. Mat. Iberoamericana 2(1986)1–18.

    Google Scholar 

  18. S. Mallat, Multiresolution approximations and wavelet orthonormal bases ofL 2(ℝ), Trans. Amer. Math. Soc. 315(1989)69–87.

    Google Scholar 

  19. Y. Meyer, Ondelettes et fonctions splines, Seminaire Equations aux Derivées Partielles, Ecole Polytechnique, Paris (December 1986).

    Google Scholar 

  20. Y. Meyer, Principle d'incertitude, bases hilbertiennes et algèbres d'opérateurs, Bourbaki Seminar, No. 662 (1985–86).

  21. C.A. Micchelli, Using the refinement equation for the construction of pre-wavelets VI: Shift-invariant subspaces, in:Proc. NATO ASI, Maratea, Italy (April 1991).

  22. S. Riemenschneider and Z.W. Shen, Box spline, cardinal series, and wavelets, in:Approximation Theory and Functional Analysis, ed. C.K. Chui (Academic Press, New York, 1991) pp. 133–149.

    Google Scholar 

  23. S. Riemenschneider and Z.W. Shen, Wavelets and prewavelets in low dimensions, J. Approx. Theory 7(1992)18–38.

    Google Scholar 

  24. J.B. Robertson, On wandering subspaces for unitary operators, Proc. Amer. Math. Soc. 16(1965)233–236.

    Google Scholar 

  25. W. Rudin,Fourier Analysis on Groups (Interscience, New York, 1962).

    Google Scholar 

  26. I.J. Schoenberg, Cardinal spline interpolation, CBMS-NSF Series in Appl. Math. No. 12 (SIAM, Philadelphia, 1973).

    Google Scholar 

  27. R.M. Young,Introduction to Nonharmonic Fourier Series (Academic Press, 1980).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goodman, T.N.T., Lee, S.L. & Tang, W.S. Wavelet bases for a set of commuting unitary operators. Adv Comput Math 1, 109–126 (1993). https://doi.org/10.1007/BF02070823

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02070823

Keywords

Subject classification

Navigation