Skip to main content
Log in

Frontiers in ATP synthase research: Understanding the relationship between subunit movements and ATP Synthesis

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

How biological systems make ATP has intrigued many scientists for well over half the 20th century, and because of the importance and complexity of the problem it seems likely to continue to be a source of fascination to both senior and younger investigators well into the 21st century. Scientific battles fought to unravel the vast secrets by which ATP synthases work have been fierce, and great victories have been short-lived, tempered with the realization that more structures are needed, additional subunits remain to be conquered, and that during ATP synthesis, not one, but several subunits may undergo either significant conformational changes, repositioning, or perhaps even physical “rotation” similar to bacterial flagella(1,2). In this introductory article, the author briefly summarizes our current knowledge about the complex substructure of ATP synthases, what we have learned from X-ray crystallography of the F1 unit, and current evidence for subunit movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berg, H. C. (1975).Nature 254, 389–392.

    PubMed  Google Scholar 

  2. Macnab, R. and Aizawa, S. I. (1994).Ann. Rev. Biophys. Bioengineering 13, 51–83.

    Google Scholar 

  3. Capaldi, R. A., Aggeler, R., Turina, P., and Wilkins, S. (1994).Trends Biochem. Sci. 12, 186–189.

    Google Scholar 

  4. Boyer, P. D. (1993).Biochem. Biophys. Acta. 1140, 215–250.

    PubMed  Google Scholar 

  5. Pedersen, P. L. and Amzel, L. M. (1993).J. Biol. Chem. 268, 9937–9940.

    PubMed  Google Scholar 

  6. Penefsky, H. S. and Cross, R. L. (1991).Adv. Enzymol. Relat. Areas Mol. Biol. 64, 173–214.

    PubMed  Google Scholar 

  7. Senior, A. E. (1990).Ann. Rev. Biophys. Biophys Chem. 19, 7–41.

    Google Scholar 

  8. Fillingame, R. H. (1990). InThe Bacteria, Academic Press, New York, pp. 345–391.

    Google Scholar 

  9. Boyer, P. D. (1989).FASEB J. 3, 2164–2178.

    PubMed  Google Scholar 

  10. Soper, J. W., Decker, G. L., and Pedersen, P. L. (1979).J. Biol. Chem. 254, 11170–11176.

    PubMed  Google Scholar 

  11. Gogol, E. P., Lucken, U., and Capaldi, R. A. (1987).FEBS Lett. 219, 274.

    PubMed  Google Scholar 

  12. McCarty, R. E. and Hammes, G. G. (1987).Trends Biochem. Sci. 12, 234–237.

    Google Scholar 

  13. Bianchet, M., Ysern, X., Hullihen, J., Pedersen, P. L., and Amzel, L. M. (1991).J. Biol. Chem. 266, 21197–21201.

    PubMed  Google Scholar 

  14. Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994).Nature,370, 621–628.

    PubMed  Google Scholar 

  15. McEnery, M. W., Hullihen, J., and Pedersen, P. L. (1989).J. Biol. Chem. 264, 12029–12036.

    PubMed  Google Scholar 

  16. Walker, J. E., Gay, N. J., Powell, S. J., Kostina, M., and Dyer, M. R. (1987).Biochemistry 26, 8613–8619.

    PubMed  Google Scholar 

  17. Walker, J. E., Runswick, M. J., and Poulter, L. (1987).J. Mol. Biol. 197, 89–100.

    PubMed  Google Scholar 

  18. Yosihare, Y., Nagase, H., Yamani, T., Oka, H., Tani, I., and Higuti, T. (1991).Biochem. 30, 6854–6860.

    Google Scholar 

  19. Hekman, C. and Hatefi, Y. (1991).Arch. Biochem. Biophys. 284, 90–97.

    PubMed  Google Scholar 

  20. Belogrudov, G., Tomich, J. M., and Hatefi, Y. (1995).J. Biol. Chem. 270, 2053–2060.

    PubMed  Google Scholar 

  21. Collinson, I. R., van Raaij, M. J., Runswick, M. J., Fearnley, I. M., Skehel, J. M., Orriss, G. L., Miroux, B., and Walker, J. E. (1994).J. Mol. Biol. 242, 408–421.

    PubMed  Google Scholar 

  22. BirkenhÄger, R., Hoppert, M., Deckers-Hebestreit, Mayer, F., and Altendorf, K. (1995).Eur. J. Biochem. 230, 58–67.

    PubMed  Google Scholar 

  23. Pullman, M. E. and Monroy, G. C. (1963).J. Biol. Chem. 238, 3762–3769.

    PubMed  Google Scholar 

  24. Amzel, L. M. and Pedersen, P. L. (1978).J. Biol. Chem. 253, 2067–2069.

    PubMed  Google Scholar 

  25. Pedersen, P. L., Hullihen, J., Bianchet, M., Amzel, L. M., and Lebowitz, M. S. (1995).J. Biol. Chem. 270, 1775–1784.

    PubMed  Google Scholar 

  26. Amzel, L. M., Bianchet, M., and Pedersen, P. L. (1992).J. Bioenerg. Biomemb. 24, 429–433.

    Google Scholar 

  27. Lutter, R., Abrahams, J. P., van Raaij, M. J., Todd, R. J., Lundquist, T., Buchanan, S. K., Leslie, A. G. W., and Walker, J. E. (1993).J. Mol. Biol. 229, 787–790.

    PubMed  Google Scholar 

  28. Cross, R. L. (1981).Ann. Rev. Biochem. 50, 681–714.

    PubMed  Google Scholar 

  29. Daggett, S. G., Tomaszek, T. A., Jr., and Shuster, S. M. (1985).Arch. Biochem. Biophys. 236, 815–824.

    PubMed  Google Scholar 

  30. Vasilyeva, E. A., Minkov, I. A., Fitin, A. F., and Vinogradov, A. D. (1982).Biochem. J. 202, 15–23.

    PubMed  Google Scholar 

  31. Ebel, R. E., and Lardy, H. A. (1975).J. Biol Chem. 250, 191–196.

    PubMed  Google Scholar 

  32. Pedersen, P. L. (1976).J. Biol. Chem. 254, 934–940.

    Google Scholar 

  33. Catterall, W. A. and Pedersen, P. L. (1974).Biochem. Soc. Spec. Publ. 4, 63–88.

    Google Scholar 

  34. Cross, R. L., Grubmeyer, C., and Penefsky, H. S. (1982).J. Biol. Chem., 12101–12105.

  35. Reynafarje, B. D. and Pedersen, P. L. (1996).J. Biol. Chem., in press.

  36. Watts, S. D., Zhang, Y., Fillingame, R. H., and Capaldi, R. A. (1995)FEBS Lett. 368, 235–238.

    PubMed  Google Scholar 

  37. Duncan, T. M., Bulygin, V., Zhou, Y., Hutcheon, M. L., and Cross, R. L. (1995).Proc. Natl. Acad. Sci. (USA) 92, 10964–10968.

    Google Scholar 

  38. Turina, P. and Capaldi, R. A. (1994).Biochem. 33, 14275–14280.

    Google Scholar 

  39. Turina, P. and Capaldi, R. A. (1994)J. Biol. Chem. 269, 13465–13471.

    PubMed  Google Scholar 

  40. Sabbert, D., Engelbrecht, S., and Junge, W. (1996).Nature, 623–625.

  41. Gogol, E. P., Johnston, E., Aggeler, R., and Capaldi, R. A. (1990).Proc. Natl. Acad. Sci. (USA) 87, 9585–9589.

    Google Scholar 

  42. Capaldi, R. A., Aggeler, R., Wilkens, S., and Grüber, G. (1996).J. Bioenerg. Biomembr. 28, 397–401.

    PubMed  Google Scholar 

  43. Vik, S. B. and Antonio, B. J. (1994).J. Biol. Chem. 269, 30364–30369.

    PubMed  Google Scholar 

  44. Zhang, F. X., Pan, W., and Hutchins, J. B. (1995).J. Neurochem. 65, 2812–2815.

    PubMed  Google Scholar 

  45. Howitt, S. M., Rodgers, A. J. W., Hatch, L. P., Gibson, F., and Cox, G. B. (1996).J. Bioenerg. Biomemb. 28, 415–420.

    Google Scholar 

  46. Webster's New Collegiate Dictionary (1974). G. & C. Merriam Co., Springfield, Ma, p. 1137.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedersen, P.L. Frontiers in ATP synthase research: Understanding the relationship between subunit movements and ATP Synthesis. J Bioenerg Biomembr 28, 389–395 (1996). https://doi.org/10.1007/BF02113979

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02113979

Key words

Navigation