Skip to main content
Log in

On divergence-free wavelets

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper is concerned with the construction of compactly supported divergence-free vector wavelets. Our construction is based on a large class of refinable functions which generate multivariate multiresolution analyses which includes, in particular, the non tensor product case.

For this purpose, we develop a certain relationship between partial derivatives of refinable functions and wavelets with modifications of the coefficients in their refinement equation. In addition, we demonstrate that the wavelets we construct form a Riesz-basis for the space of divergence-free vector fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Battle and P. Federbush, Divergence-free vector wavelets, Michigan Math. J. 40 (1993) 181–195.

    Article  MATH  MathSciNet  Google Scholar 

  2. G. Battle and P. Federbush, Space-time wavelet basis for the continuity equation, Appl. Comp. Harmon. Anal. 1 (1994) 284–294.

    Article  MATH  MathSciNet  Google Scholar 

  3. G. Battle and P. Federbush, A note on divergence-free vector wavelets, University of Michigan, Preprint (1991).

  4. C. de Boor, K. Höllig and S.D. Riemenschneider,Box Splines (Springer, New York, 1993).

    MATH  Google Scholar 

  5. J.M. Carnicer, W. Dahmen and J.M. Peña, Local decomposition of refinable spaces, IGPM-Report 112, RWTH Aachen (1995).

  6. A.S. Cavaretta, W. Dahmen and C.A. Micchelli, Stationary subdivision, Memoirs AMS 93, no. 453 (1991).

  7. C.K. Chui,An Introduction to Wavelets (Academic Press, Princeton, NJ, 1992).

    MATH  Google Scholar 

  8. A. Cohen and I. Daubechies, Non-separable bidimensional wavelet bases, Rev. Mat. Iberoam. 9 (1993) 51–137.

    MATH  MathSciNet  Google Scholar 

  9. A. Cohen and I. Daubechies, A new technique to estimate the regularity of refinable functions, Preprint (1994).

  10. A. Cohen, I. Daubechies and J.-C. Feauveau, Biorthogonal bases of compactly supported wave-lets, Comm. Pure Appl. Math. 45 (1992) 485–560.

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Cohen and J.M. Schlenker, Compactly supported bidimensional wavelet bases with hexagonal symmetrie, Preprint AT&T Bell Laboratories, Murray Hill, NJ (1992).

    Google Scholar 

  12. M. Dæhlen and T. Lyche, Box splines and applications, Senter for industriforskning, Oslo, Norway, Preprint NTNF it.26534 (1990).

  13. S. Dahlke and I. Weinreich, Wavelet-Galerkin methods: An adapted biorthogonal wavelet basis, Constr. Approx. 9 (1993) 237–262.

    Article  MATH  MathSciNet  Google Scholar 

  14. S. Dahlke and I. Weinreich, Wavelet bases adapted to pseudo-differential operators, Appl. Comp. Harmon. Anal. 1 (1994) 267–283.

    Article  MATH  MathSciNet  Google Scholar 

  15. W. Dahmen, Some remarks on multiscale transformations, stability and biorthogonality, in:Wavelets, Images, and Surface Fitting, eds. P.J. Laurent, A. le Méhauté and L.L. Schumaker (A.K. Peters, Wessely, 1994) pp. 157–188.

    Google Scholar 

  16. W. Dahmen, Stability of multiscale transformations, IGPM-Report 109, RWTH Aachen (1994).

  17. W. Dahmen and C.A. Micchelli, Translates of multivariate splines, Lin. Alg. Appl. Math. 52/53 (1983) 217–234.

    MathSciNet  Google Scholar 

  18. W. Dahmen and C.A. Micchelli, Biorthogonal wavelet expansions, in preparation.

  19. I. Daubechies,Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics 61 (1992).

  20. P. Federbush, Navier and Stokes meet the wavelet, Commun. Math. Phys. 155 (1993) 219–248.

    Article  MATH  MathSciNet  Google Scholar 

  21. P. Federbush, Local strong solution of the Navier-Stokes equations in terms of local estimates, University of Michigan, Preprint (1991).

  22. R.-Q. Jia and J. Lei, Approximation by multiinteger translates of functions having global support, J. Approx. Theory 72 (1993) 2–23.

    Article  MATH  MathSciNet  Google Scholar 

  23. R.-Q. Jia and C.A. Micchelli, Using the refinement equation for the construction of pre-wavelets II: Powers of two, in:Curves and Surfaces, eds. P.J. Laurent, A. le Méhauté and L.L. Schumaker (Academic Press, New York, 1991).

    Google Scholar 

  24. P. Lancaster and M. Tismenetsky,Theory of Matrices (Academic Press, Orlando, 1985).

    MATH  Google Scholar 

  25. P.G. Lemarié-Rieusset, Analyses multi-résolutions non orthogonales, Commutation entre projecteurs et dérivation et ondelettes vecteurs à divergence nulle, Rev. Mat. Iberoam. 8 (1992) 221–236.

    MATH  Google Scholar 

  26. S. Mallat, Multiresolution approximation and wavelet orthonormal bases ofL 2, Trans. Amer. Math. Soc. 315 (1989) 69–88.

    Article  MATH  MathSciNet  Google Scholar 

  27. Y. Meyer,Ondelettes et Opérateurs I (Hermann, Paris, 1990).

    MATH  Google Scholar 

  28. S.M. Nikol'skiim,Approximation of Functions of Several Variables and Imbedding Theorems (Springer, Berlin, 1975).

    Google Scholar 

  29. S.D. Riemenschneider and Z.W. Shen, Box-splines, cardinal series and wavelets, in:Approximation Theory and Functional Analysis, ed. C.K. Chui (Academic Press, Boston, 1991) pp. 133–149.

    Google Scholar 

  30. S.D. Riemenschneider and Z.W. Shen, Wavelets and pre-wavelets in low dimensions, J. Approx. Theory 71 (1992) 18–38.

    Article  MATH  MathSciNet  Google Scholar 

  31. J. Stöckler, Multivariate wavelets, in:Wavelets: A Tutorial in Theory and Applications, ed. C.K. Chui (Academic Press, Princeton, NJ, 1992) pp. 325–355.

    Google Scholar 

  32. R.M. Young,An Introduction to Nonharmonic Fourier Series (Academic Press, Princeton, NJ, 1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported by the Deutsche Forschungsgemeinschaft in the Graduiertenkolleg “Analyse und Konstruktion in der Mathematik” at the RWTH Aachen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urban, K. On divergence-free wavelets. Adv Comput Math 4, 51–81 (1995). https://doi.org/10.1007/BF02123473

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02123473

Keywords

AMS subject classification

Navigation