Skip to main content
Log in

Spontaneous regression of cancer: New insights

  • Published:
Biotherapy

Abstract

Suppression of oncogene expression and of host- or tumour-expressed growth factors and receptors may precipitate spontaneous regression or dormancy in human cancer. Loss of oncogenes necessary for progressive proliferation can lead to differentiation changes. Both natural factors and chemical agents can trigger such a change, and of the naturally occurring agents, growth factors and immunological factors have been most studied. We may find new clues to biological methods of prolonging arrest of cancer, by looking for cytogenetic abnormalities, alterations in oncogene expression and immunocytological composition, in patients showing prolonged dormancy of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Everson TC, Cole WH. Spontaneous regression of cancer. Philadelphia: W.B. Saunders, 1966.

    Google Scholar 

  2. Boyd, W. The spontaneous regression of cancer. Springfield, Illinois: Charles C. Thomas, 1966.

    Google Scholar 

  3. Stephenson HE, Delmez JA, Renden DI, Kimpton RS et al. Host immunity and spontaneous regression of cancer; computerized data reduction study. Surg Gynec Obst 1971; 133: 649–55.

    Google Scholar 

  4. Baker HW. Biological control of cancer; the James Ewing Lecture. Arch Surg 1986; 121: 1237–41.

    PubMed  Google Scholar 

  5. Brown GE. New concepts in tumour cell dormancy. Rev Endoc Related Cancer 1989; 32: 23–8.

    Google Scholar 

  6. Eccles SA, Alexander P. Immunologically mediated restraint of latent tumour metastases. Nature 1975; 257: 52–3.

    PubMed  Google Scholar 

  7. Noble RL, Hoover L. A classification of transplantable tumors in Nb rats controlled by estrogen from dormancy to autonomy. Cancer Res 1975; 35: 2935–8.

    PubMed  Google Scholar 

  8. Parkinson DR. Interleukin 2; further progress through greater understanding. J Nat Cancer Inst 1990; 82: 1374–6.

    PubMed  Google Scholar 

  9. Rosenberg SA, Latze MT, Aebersold PM et al. Experience with the use of high dose interleukin 2 in the treatment of 652 cancer patients. Ann Surg 1989; 210: 474–85.

    PubMed  Google Scholar 

  10. Stoll BA. Prolonged survival in breast cancer. In: Stoll BA, ed. Prolonged arrest of cancer. Chichester: John Wiley, 1982: 59–86.

    Google Scholar 

  11. Rees GJG. Abscopal regression following radiotherapy for adenocarcinoma. Brit J Radiol 1983; 56: 63–6.

    PubMed  Google Scholar 

  12. Roberts AR, Sporn MB. Growth factors related to transformation. In: Harris JR et al., eds. Breast diseases. New York: Lippincott, 1987: 67–80.

    Google Scholar 

  13. Kinnon C, Levinsky RJ. Gene therapy for cancer. Eur J Cancer 1990; 26: 638–40.

    PubMed  Google Scholar 

  14. Carlsen NLT. How frequent is spontaneous remission of neuroblastomas? Implications for screening. Br J Cancer 1990; 61: 441–6.

    PubMed  Google Scholar 

  15. Haas D, Ablin AR, Miller C et al. Complete pathologic maturation and regression of Stage 4S neuroblastoma without treatment. Cancer 1988; 62: 818.

    PubMed  Google Scholar 

  16. Thiele CJ, Reynolds CP, Israel MJ. Decreased expression of N-myc precedes retinoic acid-induced morphological differentiation of human neuroblastoma. Nature 1985; 313: 404–6.

    PubMed  Google Scholar 

  17. Sporn MB, Roberts AB. Transforming growth factor beta. J Am Med Assoc 1989; 262: 938–41.

    Google Scholar 

  18. Bookstein P, Shew JY, Chen PL et al. Suppression of tumourigenicity of human prostate carcinoma cells by replacing a mutated RB gene. Science 1990; 247: 712–5.

    PubMed  Google Scholar 

  19. Freed SZ, Halperin JP, Gordon M. Idiopathic regression of metastases from renal cell carcinoma. J Urol 1977; 118: 538–46.

    PubMed  Google Scholar 

  20. Sroujieh AS. Spontaneous regression of intestinal malignant melanoma from an occult primary site. Cancer 1988; 62: 1247–50.

    PubMed  Google Scholar 

  21. Franklin CIV. Spontaneous regression of metastases from testicular tumours; a report of six cases from one centre. Clin Radiol 1977; 28: 499–502.

    PubMed  Google Scholar 

  22. Poppema S, Postma L, Brinker M, de Jong B. Spontaneous regression of a small non-cleaved cell malignant lymphoma. Cancer 1988; 62: 791–4.

    PubMed  Google Scholar 

  23. Coley NH, Fowler GA, Bogatho FH. A review of the influence of bacterial infections and of bacterial products (Coley's toxins) on malignant tumors in man. Acta Med Scand (Suppl) 1953; 274: 29–97.

    Google Scholar 

  24. Carswell EA, Old LJ, Kassel RJ et al. An endotoxin induced serum factor that causes necrosis of tumors. Proc Nat Acad Sci USA 1975; 72: 3666–70.

    PubMed  Google Scholar 

  25. Balkwill FR, Naylor MS, Malik S. Tumour necrosis factor as an anticancer agent. Eur J Cancer 1990; 26: 641–4.

    PubMed  Google Scholar 

  26. Saracco S, Abramowsky C, Taylor S, Silverman RA, Berman BW. Spontaneously regressing adrenocortical carcinoma in a newborn. Cancer 1988; 62: 507–11.

    PubMed  Google Scholar 

  27. Tisdale MJ. Scope and limitations of antimitotic therapy. In: Stoll BA, ed. Prolonged arrest of cancer. Chichester: John Wiley, 1982: 407–18.

    Google Scholar 

  28. Campisi J, Gray HE, Pardee AB aet al. Cell cycle control of c myc but not c ras is lost following chemical transformation. Cell 1984; 36: 241–7.

    PubMed  Google Scholar 

  29. Hong WK, Wittes RE, Hajdu ST et al. The evolution of mature teratoma from malignant testicular tumors. Cancer 1977; 40: 2987–92.

    PubMed  Google Scholar 

  30. Friedman SJ, Skehan P. Morphological differentiation of human choriocarcinoma cells induced by methotrexate. Cancer Res 1979; 39: 1960–7.

    PubMed  Google Scholar 

  31. Buesow SC, Gillespie GY. Interferon alpha and gamma promote myeloid differentiation of HL60, a human acute promelocytic cell line. J Biol Resp Mod 1984; 3: 653–62.

    Google Scholar 

  32. Niederle N, Kloke O, Osieka R et al. Interferon alpha 26 in the treatment of chronic myelogenous leukemia. Sem Oncol 1987; 14 (Suppl 2): 29–36.

    Google Scholar 

  33. Borrow J, Goddard AD, Sheer D, Solomon E. Molecular analysis of acute promeeoocytic leukemia breakpoint cluster region on chromosome 17. Science 1990; 249: 1577–80.

    PubMed  Google Scholar 

  34. Bollag W. Retinoids and cancer. Cancer Chemother Pharmacol 1979; 3: 207–15.

    PubMed  Google Scholar 

  35. Lewison EF Spontaneous regression of breast cancer. Nat Cancer Inst Monog 1976; 44: 23–9.

    Google Scholar 

  36. Krutchik AN, Buzdar AU, Blumenschein GR, Lukeman JM. Spontaneous regression of breast carcinoma. Arch Int Med 1978; 138: 1734–5.

    Google Scholar 

  37. Wheelock EF, Brodovsky HS. Dormant cancer. In: Stoll BA, ed. Prolonged arrest of cancer. Chichester: John Wiley, 1982: 87–102.

    Google Scholar 

  38. Lippman ME, Allegra JC. Quantitative estrogen receptor analysis; response to endocrine and cytotoxic chemotherapy in human breast cancer and the disease free-interval. Cancer 1980; 46: 2829–34.

    PubMed  Google Scholar 

  39. Perez R, Pascual M, Macias A, Lage A. Epidermal growth factor receptors in human breast cancer. Breast Cancer Res Treat 1984; 4: 189–93.

    PubMed  Google Scholar 

  40. Bates SE, Davidson NE, Valverius EM et al. Expression of transforming growth factor alpha and its messenger ribonucleic acid in human breast cancer; its regulation by estrogen and its possible functional significance. Mol Endoc 1988; 2: 543–55.

    PubMed  Google Scholar 

  41. Lippman ME, Dickson RB, Bates S et al. Autocrine and paracrine growth regulation of human breast cancer. Breast Cancer Res Treat 1986; 75: 59–70.

    Google Scholar 

  42. Ikemi Y, Nagakawa S, Nagakawa T, Sugita M. Quoted by Fox BH. Journal Behav Med 1978; 1: 45–9.

    Google Scholar 

  43. Cole WH. Spontaneous regression of cancer; the metabolic triumph of the host. Ann NY Acad Sci 1974; 230: 111–41.

    PubMed  Google Scholar 

  44. Sindelar WF, Ketchman AS. Regression of cancer following surgery. Nat Cancer Inst Monog 1976; 44: 81–4.

    Google Scholar 

  45. Fox BH, Newberry BH. Impact of psychoendocrine systems in cancer and immunity. New York: C.J. Hogrefe, 1984.

    Google Scholar 

  46. Ader R. Psychoneuroimmunology. New York: Academic Press, 1981.

    Google Scholar 

  47. Levy S, Herberman R, Lippman M, D'Angelo I. Correlation of stress factors with sustained depression of NK cell activity and predicted prognosis in patients with breast cancer. J Clin Oncol 1987; 5: 348–53.

    PubMed  Google Scholar 

  48. Le Goaster J, Le Magnen J. Neurobiology and cancer; possible role of beta endorphins in cancer growth regulation 1987; 1: 204–7.

    Google Scholar 

  49. Faguet GB, Davis HC. Survival in Hodgkins Disease; the role immunocompence and other major risk factors. Blood 1982; 59: 938–45.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoll, B.A. Spontaneous regression of cancer: New insights. Biotherapy 4, 23–30 (1992). https://doi.org/10.1007/BF02171706

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02171706

Key words

Navigation