Skip to main content
Log in

Population regulation in large northern herbivores: evolution, thermodynamics, and large predators

Bestandesregulierung von nördlichen Großherbivoren: Evolution, Thermodynamik und Großraubtiere

Régulation de population chez les grands herbivores de l'hémisphère Nord : évolution, thermodynamique et grands prédateurs

  • Abhandlungen
  • Published:
Zeitschrift für Jagdwissenschaft Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Summary

Understanding population regulation of large northern herbivores like cervids has important practical and theoretical implications. Corrective measures for high densities of cervids must be based on theory and thus necessitate analysis of contradicting views of top-down and bottom-up population control. The former considers cervids incapable of self-regulation and hence that they need external factors like predation to achieve effective population regulation. The latter claims that cervids exhibit the capacity to adjust their numbers to the food supply as shown by physiological responses. However, these phenomena are not an expression of evolutionary adaption, they are a predictable physiological reaction to reduced food. In addition, studies were often done in man-modified environments or without considerations of modulating effects through predators. It is unlikely to study pristine relationships between large herbivores and predators in the future through field work, and insights from other fields need to be heeded. Considerations from evolution, thermodynamics, food webs and nutrient cycling indicate that the development of biological systems is unidirectional due to irreversible processes and leads toward optimal order and optimal accumulation of energy and nutrients. Large predators are thus not just a luxury development of evolution, but a necessary sequel to natural laws and they increase efficiency of the system to capture solar energy. It explains why analogous ecomorphs, like saber-tooth “cats” (placental and marsupial) have re-evolved independently at least 5 times. As a group, large predators developed traits allowing self-regulation including territoriality, intra- and interspecific killing, prey-switching, and dispersal. However, in man-modified environments, herbivore densities can reach such high levels that even an intact predator community will no longer exert regulation as there is an upper limit of predator density determined by social mechanisms. As kill success rates are very low, predators also affect herbivores by largely determining spacial distribution and behavioral adaptions, all of which modify herbivore-plant interactions. Cervids on the other hand exhibit traits all indicative of absence of a capacity to self-regulate. Predictable physiological responses to reduced food intake thus operate so late that the typical population response is an irruption with subsequent major dieoff and leads to a reduction in system performance including loss of biodiversity. Therefore, the claim that there exists “natural” regulation in such situations is an erroneous term for what is better called forced starvation. Two conclusions can be drawn:

  1. 1.

    Herbivore densities above a critical level will inevitably cause shifts in community functioning by altering plant and animal species composition, nutrient and energy flow patterns: the system will effectively be forced to a less complex and hence, less productive level, an evolutionary step backwards.

  2. 2.

    By having modified ecological parameters necessary for the welfare of herbivores, we need to take on the responsibility to guarantee their future welfare by actively replacing missing factors. For cervids it may mean implementing harvesting such that population densities permit natural plant rejuvenation and optimal biodiversity. Where the predator community is still intact, it should be protected by all means, and where still possible, predator communities should be restored. A basic tool is to disseminate the best available information, namely that large northern herbivores do not exhibit self regulation.

Zusammenfassung

Das Verständnis über Bestandesregulierung von nördlichen Groflherbivoren wie Cerviden hat wichtige praktische und theoretische Bedeutung. Lösungen für hohe Dichten von Cerviden müssen auf einer Theorie basieren und verlangen deshalb eine Analyse der sich widersprechenden Ansichten von top-down und bottom-up Regulierung. Die Erstere erkennt, dass Selbst-Regulierung unter Cerviden nicht besteht und dass Prädation für Bestandesregulierung notwendig ist. Die Letztere räumt den Cerviden ein, dass sie die Kapazität besitzen, ihren Bestand der Nahrungsquelle anzupassen. Dabei wird übersehen, dass dies keiner evolutionären Strategie, sondern vorhersagbaren physiologischen Reaktionen auf Nahrungsmangel entspricht. Zudem sind Studien oft in anthropogen modifizierter Umwelt oder ohne Berücksichtigung der modulierenden Effekte der Prädatoren gemacht worden. Durch die gegebene Schwierigkeit, zukünftig die ursprüngliche Beziehung zwischen nördlichen Großherbivoren und -raubtieren durch Feldstudien zu klären, ist es angebracht, sich auf andere relevante Wissensgebiete zu beziehen. Evolution, Thermodynamik, Analysen von Nahrungsketten und -zyklen deuten alle darauf hin, dass organische Entwicklung durch irreversible Prozesse richtungsspezifisch ist, sodass Ökosysteme optimale Ordnung und Anhäufung von Energie und Nährstoffen erreichen. Großraubtiere sind nicht nur luxuriöse Erscheinungen der Evolution, sondern sind Folge der genannten Gesetze und erhöhen somit die Wirksamkeit des Systems im Abfangen solarer Energie. So wird verständlich, dass Evolution in analoger Weise Raubtiertypen mehrere Male und innerhalb verschiedener Taxa hervorbrachte (z. B. 4 mal als Säbel-Säuger, aber auch als Säbel-Beuteltier). Zudem sind unter den Großraubtieren mehrere, für Selbst-Regulierung wichtige Charakteristika weitverbreitet: Territorialität, intra- und interspezifisches Töten, Prey-Switching und Dispersion. Im modifizierten Ökosystem können Dichten der Cerviden jedoch so hoch werden, dass auch eine intakte Räubergemeinschaft keine Regulierung mehr erreicht, weil die obere Grenze der Prädatorendichte durch Sozialverhalten bestimmt wird. Da die Wirksamkeit beim Beutefang sehr gering ist, beeinflussen Raubtiere zudem die Verbreitung und Verhaltensweise der Herbivoren, welche die Herbivore-Pflanzen Beziehung beeinflussen. Cerviden reagieren physiologisch auf Nahrungsmangel, prinzipiell unter extremen Bedingungen und so spät, dass die Pflanzengesellschaft schon schwer beschädigt ist und der Bestand ein Massensterben erleidet. Die Behauptung, dass in solchen Situationen „natürliches Selbst-Regulieren“ existiert, ist ein irrtümliches Konzept, das besser als forciertes Verhungern bezeichnet werden sollte. Die Integration der Herbivoren im Ökosystem entstand unter ständiger Bestandeskontrolle durch die Großraubtiergemeinschaft, d. h. die Beziehung zwischen Pflanzengemeinschaft und Herbivoren wurde prinzipiell durch Raubtiere moduliert. Nur in der Kulturlandschaft finden sich Bestände von Herbivoren, die ausschliefllich durch das Nahrungsangebot reguliert werden. Daraus lassen sich zwei Schlüsse ziehen:

  1. 1.

    Die Dichte von Herbivoren über ein Limit hinaus führt unweigerlich zu Verschiebungen in der Pflanzen- und Tierartenzusammensetzung, und des Musters der Stoff- und Energieflüsse: das System wird effektiv auf einen weniger komplexen Stand und zu abnehmender Produktivität gebracht, ein evolutionärer Rückschritt.

  2. 2.

    Die anthropogene Modifizierung der für das Wohlergehen der Herbivoren nötigen ökologischen Parameter verlangt, dass wir mit entsprechender Verantwortung dieselben ersetzen, sodass das zukünftige Wohlergehen der Herbivoren garantiert wird. Für Cerviden bedeutet das die Durchführung der Jagd, sodass die Bestandesdichte optimale Biodiversität und natürliche Verjüngung erlaubt. Wo die Raubwildgemeinschaft immer noch intakt ist, sollte sie mit allen Mitteln geschützt werden, und wo immer noch möglich, soll die Gemeinschaft wieder instand gesetzt werden.

Résumé

La compréhension de la régulation de populations des grands herbivores de l'hémisphère Nord tels que les Cervidés comporte des implications pratiques et théoriques importantes. Des mesures visant à corriger de fortes densités en Cervidés doivent être basées sur la théorie et nécessitent donc une analyse d'approches contradictoires du contrôle de population du sommet vers le bas et de la base vers le haut de la pyramide écologique. La première considère les Cervidés incapables d'auto-régulation, nécessitant dès lors, pour assurer une régulation de population effective, l'intervention de facteurs externes tel que la prédation. La seconde prétend que les Cervidés possèdent la capacité d'ajuster leur nombre aux ressources alimentaires par des réponses physiologiques. Cependant, on perd de vue que ces phénomènes ne sont pas une expression d'une stratégie évolutive, mais qu'ils correspondent plutôt à une réaction physiologique prévisible vis-à-vis d'une réduction des ressources alimentaires. En outre, les recherches ont souvent été réalisées dans des milieux altérés par l'homme ou sans tenir compte des effets modulateurs causés par les prédateurs. Compte tenu de cette difficulté d'expliquer dans le futur, par des études de terrain, la relation originelle entre les grands herbivores et les grands prédateurs de l'hémisphère Nord, il s'impose de s'en référer à d'autres sources pertinentes de connaissances. Evolution, thermodynamique, analyses des chaînes et des cycles alimentaires concluent toutes au fait que le développement de systèmes biologiques procède par des processus irréversibles et dans une direction bien déterminée, pour aboutir à une allocation optimale de l'énergie et des composants alimentaires. Les grands prédateurs ne sont donc pas comme une sorte de luxe de l'évolution mais une conséquence nécessaire des lois naturelles en question, augmentant de la sorte l'efficacité du système en ce qui concerne la mobilisation de l'énergie solaire. Ceci explique pourquoi l'évolution a, à différentes reprises et de façon analogue, développé des écomorphes au sein de différents taxons; ainsi les « chats » à dents de sabre (placentaire et marsupial) ont-ils ré-évolués indépendamment au moins 5 fois. Comme groupe, les grands prédateurs ont développé des caractères autorisant l'auto-régulation, tels que la territorialité, la prédation intra- et interspécifique, l'alternance de proies et la dispersion. Cependant, dans les milieux modifiés par l'homme, les densités d'herbivores atteignent de telles proportions que même une zoocénose intacte de prédateurs ne serait plus en mesure d'exercer une régulation du fait que des mécanismes sociaux définissent une limite supérieure à la densité des prédateurs. Comme les taux de mortalité par prédation sont très faibles, les prédateurs agissent également sur la dispersion et le comportement des herbivores, lesquels influencent à leur tour les rapports herbivores — végétation. La réponse physiologique des Cervidés à un manque de nourriture n'intervient en principe que lorsque les conditions sont extrêmes et fort tardivement, c'est-à-dire lorsque le tapis végétal est déjà fortement endommagé et lorsque la population subit des mortalités massives. L'affirmation selon laquelle intervient, dans de telles situations, une « auto-régulation naturelle » est un concept erroné qui devrait plutôt être désigné sous le nom d'épuisement suite à une famine forcée. L'intégration des herbivores dans l'écosystème trouve son origine dans un contrôle permanent du niveau de population par la communauté des grands carnivores, c'est-à-dire que la relation entre la végétation et les herbivores est en principe modulé par les prédateurs. Ce n'est que dans le paysage cultivé que l'on trouve des herbivores qui sont exclusivement régulés par les ressources alimentaires. De tout ceci on peut tirer deux conclusions :

  1. 1.

    une densité dépassant un certain niveau conduit inexorablement à des glissements vers des compositions floristique et faunistique ainsi que vers des flux de l'énergie et de la matière : le système est effectivement ramené à un niveau moins complexe et à une productivité moindre, ce qui correspond à une régression évolutive;

  2. 2.

    la modification anthropogène des paramètres écologiques, nécessaires à l'épanouissement des herbivores, exige que nous procédions au remplacement des mêmes de façon responsable, de telle sorte que le bien-être futur des herbivores soit assuré. Pour les Cervidés, cela signifie la poursuite de la chasse de manière à ce que la densité de population permette une biodiversité optimale et une régénération naturelle. Là où la communauté des prédateurs est toujours intacte, il convient de la protéger par tous les moyens et, là où la chose est toujours possible, cette communauté de prédateurs doit à nouveau être restaurée.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrams, P. A., 1993: Why predation rate should not be proportional to predator density. Ecology74, 726–733.

    Google Scholar 

  • Adams, L. G.;Singer, F. J.;Dale, B. W., 1995: Caribou calf mortality in Denali National park, Alaska. J. Wildl. Manage.59, 584–594.

    Google Scholar 

  • Albon, S. D.;Coulson, T. N.;Clutton-Brock, T. H., 1998: Demographic constraints in red deer(Cervus elaphus): can the past predict the future? In:Milne, J. A. (ed.), Recent developments in deer biology Edinburgh, UK: Moredun Res. Inst., pp. 85–95.

    Google Scholar 

  • Anderson, A. E.;Bowden, D. C.;Kattner, D. M., 1992: The puma on Uncompahgre Plateau, Colorado. Techn. Publ. No. 40. Ft. Collins, Colorado, USA: Colorado Division of Wildlife. 116 pp.

    Google Scholar 

  • Augustine, D. J.;McNaughton, S. J., 1998: Ungulate effects on the functional species composition of plant communities: herbivore selectivity and plant tolerance. J. Wildl. Manage.62, 1165–1183.

    Google Scholar 

  • Bailey, T. N., 1974: Social organization in a bobcat population. J. Wildl. Manage.38, 435–446.

    Google Scholar 

  • Baines, D.;Sage, R. B.;Baines, M. M., 1994: The implications of red deer grazing to ground vegetation and invertebrate communities of Scottish native pinewoods. J. Appl. Ecol.31, 776–783.

    Google Scholar 

  • Ballard, W. B., 1992: Modelled impacts of wolf and bear predation on moose calf survival. Alces 28: 79–88.

    Google Scholar 

  • Ballard, W. B.;Ayres, L. A.;Krausman, P. R.;Reed, D. J. et al., 1997: Ecology of wolves in relation to a migratory caribou herd in Northwest Alaska. Wildl. Monogr.135, 47.

    Google Scholar 

  • Ballard, W. B.;Miller, S. D., 1992: Effects of reducing brown bear density on moose calf survival in southcentral Alaska. In:Bobek, B.;Perzanowski, K.;Regelin, W. L. (eds.), Global trends in wildlife management. Krakow, Poland: Swiat Press, Vol. 2, pp. 171–175.

    Google Scholar 

  • Ballard, W. B.;Miller, S. D.;Whitman, J. S., 1992: Brown and black bear predation on moose in southcentral Alaska. In:Bobek, B.;Perzanowski, K.;Regelin, W. L. (eds.), Global trends in wildlife management. Krakow, Poland: Swiat Press, Vol. 2, pp. 177–184.

    Google Scholar 

  • Ballard, W. B.;Whitlaw, H. A.;Young, S. J.;Jenkins, R. A. et al., 1999: Predation and survival of white-tailed deer fawns in Northcentral New Brunswick. J. Wildl. Manage.63, 574–579.

    Google Scholar 

  • Ballard, W. B.;Whitman, J. S.;Reed, D. J., 1991: Population dynamics of moose in south-central Alaska. Wildl. Monogr.114, 49.

    Google Scholar 

  • Barmore, W. J.; Stradley, D., 1971: Predation by black bear on mature male elk. J. Mammal. 52.

  • Bartmann, R. M.;White, G. C.;Carpenter, L. H., 1992: Compensatory mortality in a Colorado mule deer population. Wildl. Monogr. 121: 39.

    Google Scholar 

  • Beltran, J. F.;Aldama, J. I.;Delibes, M., 1992: Ecology of the Iberian lynx in Donana, SW Spain. In:Bobek, B.;Perzanowski, K.;Regelin, W. L. (eds.), Global trends in wildlife management. Krakow, Poland: Swiat Press, Vol. 2, pp. 331–334.

    Google Scholar 

  • Bergerud, A. T., 1971: The population dynamics of Newfoundland caribou. Wildl. Monogr.25, 1–55.

    Google Scholar 

  • Bergerud, A. T.;Nolan, M. J.;Curnew, K.;Mercer, W. E., 1983 a: Growth of the Avalon Penninsula, Newfoundland caribou herd. J. Wildl. Manage.47, 989–998.

    Google Scholar 

  • Bergerud, A. T.;Snider, J. B., 1988: Predation in the dynamics of moose populations: a reply. J. Wildl. Manage.52, 559–564.

    Google Scholar 

  • Bergerud, A. T.;Wyett, W.;Snider, B., 1983 b: The role of wolf predation in limiting a moose population. J. Wildl. Manage.47, 977–988.

    Google Scholar 

  • Bibikow, D. I., 1988: Der Wolf. Wittenberg, Lutherstadt: Neue Brehm-Bücherei. 587 pp.

    Google Scholar 

  • Bjarvall, A.;Danielsson, S.;Franzen, R.;Segerstrom, P., 1996: Experiences with the first radio-collared wolverines in Sweden. J. Wildl. Res.1, 3–6.

    Google Scholar 

  • Bleich, V. C.;Bowyer, R. T.;Wehausen, J. D., 1997: Sexual segregation in mountain sheep: resources or predation? Wildl. Monogr.134, 1–50.

    Google Scholar 

  • Bobek, B.;Perzanowski, K.;Smietana, W., 1992: The influence of snow cover on wolf(Canis lupus) and red deer(Cervus elaphus) relationship in Bieszczady mountains. In:Bobek, B.;Perzanowski, K.;Regelin, W. L. (eds.), Global trends in wildlife management. Krakow, Poland: Swiat Press, Vol. 2, pp. 341–348.

    Google Scholar 

  • Boutin, S., 1992: Predation and moose population dynamics: a critic. J. Wildl. Manage.56, 116–127.

    Google Scholar 

  • Bowyer, R. T.;Ballenberghe, V. V.;Kie, 1997: The role of moose in landscape processes: effects of biogeography, population dynamics, and predation. In: Bissonette, J. A. (ed.), Wildlife and Landscape Ecology, Effects and Patterns of Scale. New York: Springer, pp. 265–287.

    Google Scholar 

  • Boyd, D. K.;Ream, R. R.;Pletscher, D. H.;Fairchild, M. W., 1994: Prey taken by colonizing wolves and hunters in the Glacier National park area. J. Wildl. Manage.58, 289–295.

    Google Scholar 

  • Breitenmoser, U.;Haller, H., 1993: Patterns of predation by reintroduced European lynx in the Swiss alps. J. Wildl. Manage.57, 135–144.

    Google Scholar 

  • Brodie, E. D.;Brodie, E. D., 1999: Predator — prey arms races. BioScience49, 557–568.

    Google Scholar 

  • Büttner, K., 1988: Die Wiedereinbürgerung von Raubwild aus waldhygienischer Sicht. Waldhygiene17, 129–146.

    Google Scholar 

  • Bufka, L.;Cerveny, J., 1996: The lynx(Lynx lynx) in the Sumava region, southwest Bohemia. J. Wildl. Res.1: 167–170.

    Google Scholar 

  • Callicott, J. B., 1980: Animal liberation: a triangular affair. Environmental Ethics2, 311–325.

    Google Scholar 

  • Carbyn, L. N., 1983: Wolf predation on elk in Riding Mountain National Park, Manitoba. J. Wildl. Manage.47, 963–976.

    Google Scholar 

  • Caughley, G., 1970: Eruption of Ungulate Populations, with Emphasis on himalayan Thar in New Zealand. Ecology51, 53–72.

    Google Scholar 

  • Chadde, S. W. K. C. E., 1991: Tall-willow communities on Yellowstone's northern range: a test of the “Natural-Regulation” paradigm. In:Keiter, R. B.;Boyce, M. S. (eds.), The Greater Yellow-stone Ecosystem: Redefining America's Wilderness Heritage. Yale Univ. Press, USA: pp. 231–262.

    Google Scholar 

  • Chamberlain, M. J.;Leopold, B. D.;Burger, L. W.;Plowman, B. W. et al., 1999: Survival and cause-specific mortality of adult bobcats in central Mississippi. J. Wildl. Manage.63, 613–620.

    Google Scholar 

  • Clements, C. C.;Young, J. A., 1997: A viewpoint: rangeland health and mule deer habitat. J. Range Manage.50, 129–138.

    Google Scholar 

  • Clutton-Brock, T. H.;Guinness, F. E.;Albon, S. D., 1982: Red Deer: Behavior and Ecology of two Sexes. Chicago: The University of Chicago Press. 378 pp.

    Google Scholar 

  • Danilov, P. I., 1990: The brown bear in Soviet Karelia. Trans. Int. Union Game Biologists19, 566–572.

    Google Scholar 

  • Davidson, W. R.;Doster, G. L., 1997: Health characteristics and white-tailed deer population density in the Southeastern Unites States. In:McShea, W. J.;Underwood, H. B.;Rappole, J. H. (eds.), The science of overabundance: deer ecology and population management. Washington, USA: Smithsonian Inst. Press, pp. 164–184.

    Google Scholar 

  • DeAngelis, D. L., 1992: Dynamics of nutrient cycling and food webs. London, England: Chapman & Hall. 270 pp.

    Google Scholar 

  • DeCalesta, D. S., 1994: Effect of white-tailed deer on songbirds within managed forests in Pennsylvania. J. Wildl. Manage.58, 711–718.

    Google Scholar 

  • DeCalesta, D. S., 1997: Deer and ecosystem management. In:McShea, W. J.;Underwood, H. B.;Rappole, J. H. (eds.), The science of overabundance: deer ecology and population management. Washington, USA: Smithsonian Inst. Press, pp. 267–279.

    Google Scholar 

  • DeCalesta, D. S.;Stout, S. L., 1997: Relative deer density and sustainability: a conceptual framework for integrating deer management with ecosystem management. Wildl. Soc. Bull.25, 252–258.

    Google Scholar 

  • Diaz, N.;Smith-Flueck, J., 2000: The Patagonian huemul. A mysterious deer on the brink of extinction. Buenos Aires: Literature of Latin America. 149 pp.

    Google Scholar 

  • Edwards, J., 1983: Diet shifts in moose due to predator avoidance. Oecologia60, 185–189.

    Article  Google Scholar 

  • Eisenberg, J. F., 1989: An introduction to the carnivora. In:Gittleman, J. L. (ed.), Carnivore behavior, ecology, and evolution. Ithaca, New York: Comstock Publ. Associates, pp. 1–9.

    Google Scholar 

  • Ellenberg, H., 1986: Immissionen — Produktivität der Krautschicht — Populationsdynamik des Rehwilds: Ein Versuch zum Verständnis ökologischer Zusammenhänge. Z. Jagdwiss.32, 171–183.

    Article  Google Scholar 

  • Ellenberg, H., 1988: Eutrophierung — Veränderungen der Waldvegetation — Folgen für den Reh-Wildverbiss und dessen Rückwirkungen auf die Vegetation. Schweiz. Z. Forstwes.139, 261–282.

    Google Scholar 

  • Erlinge, S.;Goeransson, G.;Hoegstedt, G.;Jansson, G. et al., 1984: Can vertebrate predators regulate their prey? Am. Naturalist123, 125–133.

    Article  Google Scholar 

  • Estes, J. A., 1996: Predators and ecosystem management. Wildl. Soc. Bull.24, 390–396.

    Google Scholar 

  • Filonov, C., 1980: Predator-prey problems in nature reserves of the European part of the RSFSR. J. Wildl. Manage.44, 389–396.

    Google Scholar 

  • Flueck, W. T., 1989: The effect of selenium on reproduction of black-tailed deer(Odocoileus hemionus columbianus) in Shasta County, California. Dissertation, University of California, Davis, California: pp. 284.

    Google Scholar 

  • Flueck, W. T., 1990: Possible impact of immissions on trace mineral availability to free-ranging ruminants: selenium as an example. Z. Jagdwiss.36, 179–185.

    Article  Google Scholar 

  • Flueck, W. T.;Smith-Flueck, J. M., 1990: Selenium deficiency in deer: the effect of a declining selenium cycle? Trans. Congr. Int. Union Game Biol.19, 292–301.

    Google Scholar 

  • Flueck, W. T., 1994 a: Effect of trace elements on population dynamics: selenium deficiency in free-ranging black-tailed deer. Ecology75, 807–812.

    Google Scholar 

  • Flueck, W. T., 1994 b: Relationship between body weight, lipid reserves, and ovulation rate in nonequatorial cervids: a hypothesis. Z. Jagdwiss.40, 12–21.

    Google Scholar 

  • Flueck, W. T.;Smith-Flueck, J. M., 1996: Can energy deficiency cause deer die-offs on northern mountain ranges? an exploratory analysis ofOdocoileus hemionus. Z. Jagdwiss.42, 85–96.

    Article  Google Scholar 

  • Fowler, C. W., 1981: Density dependence as related to life history strategy. Ecology62, 602–610.

    Google Scholar 

  • Freeland, W. J., 1990: Large herbivorous mammals: exotic species in northern Australia. J. Biogeogr.17, 445–449.

    Google Scholar 

  • Frid, A., 1994: Observations on habitat use and social organization of a huemul(Hippocamelus bisulcus) coastal population in Chile. Biol. Conserv.67, 13–19.

    Article  Google Scholar 

  • Frid, A., 1997: Vigilance by female Dall's sheep: interactions between predation risk factors. Anim. Behav.53, 799–808.

    Article  Google Scholar 

  • Frid, A., 1999 in press: Huemul(Hippocamelus bisulcus) sociality at a periglacial site: sexual aggregation and habitat effects on group size. Can. J. Zool.

  • Fryxell, J. M., 1991: Forage quality and aggregation by large herbivores. Amer. Naturalist138, 478–498.

    Article  Google Scholar 

  • Fuller, T. K., 1989: Population dynamics of wolves in north-central Minnesota. Wildl. Monogr.105, 41.

    Google Scholar 

  • Gaillard, J. M.;Festa-Bianchet, M.;Yoccoz, N. G., 1998: Population dynamics of large herbivores: variable recruitment with constant adult survival. Trends Ecol. Evol.13, 58–63.

    Article  Google Scholar 

  • Gasaway, W. C.;Boertje, R. D.;Grangaard, D. V.;Kelleyhouse, D. G. et al., 1992: The role of predation in limiting moose at low densities in Alaska and Yukon and implications for conservation. Wildl. Monogr.120, 59.

    Google Scholar 

  • Gordon, I. J.;Lindsay, W. K., 1990: Could mammalian herbivores “manage” their resources? Oikos59, 270–280.

    Google Scholar 

  • Gorman, M. L.;Trowbridge, B. J., 1989: The role of odor in the social lives of carnivores. In:Gittleman, J. L. (ed.), Carnivore behavior, ecology, and evolution: Ithaca, New York: Comstock Publ. Associates, pp. 57–88.

    Google Scholar 

  • Gould, S. J., 1989: Wonderful life. New York: W. W. Norton & Comp., 347 pp.

    Google Scholar 

  • Green, R., 1993: Deer mortality on a Scottish forest. Deer9, 8.

    Google Scholar 

  • Grenfell, B. T.;Wilson, K.;Finkenstadt, B. F.;Coulson, T. N. et al., 1988: Noise and determinism in synchronized sheep dynamics. Nature394, 674–677.

    Article  Google Scholar 

  • Hairston, N. G., 1964: Studies on the organization of animal communities. J. Anim. Ecol.33, 227–239.

    Google Scholar 

  • Hairston, N. G.;Smith, F. E.;Slobodkin, L. B., 1960: Community structure, population control, and competition. Am. Naturalist94, 421–425.

    Article  Google Scholar 

  • Hanley, T. A., 1998: Black-tailed deer(Odocoileus hemionus) and forest management in Alaska: practical lessons from the pursuit of foraging theory. In:Milne, J. A. (ed.), Recent developments in deer biology. Edinburgh, UK.: Moredun Res. Inst., pp. 401–409.

    Google Scholar 

  • Hansen, L. P.;Nixon, C. M.;Beringer, J., 1997: Role of refuges in the dynamics of outlying deer populations. In:McShea, W. J.;Underwood, H. B.;Rappole, J. H. (eds.), The science of overabundance: deer ecology and population management. Washington, USA: Smithsonian Inst. Press, pp. 327–345.

    Google Scholar 

  • Harrison, D. J.;Harrison, J. A., 1984: Foods of adult Maine coyotes and their known-aged pups. J. Wildl. Manage.48, 922–926.

    Google Scholar 

  • Healy, W. M., 1997: Influence of deer on the structure and composition of oak forests in central Massachusetts. In:McShea, W. J.;Underwood, H. B.;Rappole, J. H. (eds.), The science of overabundance: deer ecology and population management. Washington, USA: Smithsonian Inst. Press, pp. 249–266.

    Google Scholar 

  • Henke, S. E.;Bryant, F. C., 1999: Effects of coyote removal on the faunal community in western Texas. J. Wildl. Manage.63, 1066–1081.

    Google Scholar 

  • Hobbs, N. T., 1996: Modification of ecosystems by ungulates. J. Wildl. Manage.60, 695–713.

    Google Scholar 

  • Hobbs, N. T.;Swift, D. M., 1988: Grazing in herds: When are nutritional benefits realized? Am. Naturalist131, 760–764.

    Article  Google Scholar 

  • Hornocker, M. G., 1970: An analysis of mountain lion predation upon mule deer and elk in the Idaho primitive area. Wildl. Monogr.21, 1–39.

    Google Scholar 

  • Hornocker, M. G.;Bailey, T., 1986: Natural regulation in three species of felids. In:Miller, S. D.;Everett, D. D. (eds.), Cats of the world: biology, conservation and management. Natl. Wildl. Fed., Washington, D. C., pp. 211–220.

    Google Scholar 

  • Hornocker, M. G.;Hash, H. S., 1981: Ecology of the wolverine in northwestern Montana. Canadian J. Zool.59, 1286–1301.

    Google Scholar 

  • Howard, W. E., 1964: Modification of New Zealand's flora by introduced mammals. Proc. N. Z. Ecol. Soc.: 59–62.

  • Huggard, D. J., 1993 a: Prey selectivity of wolves in Banff National park. I. Prey species. Can. J. Zool.71, 130–139.

    Google Scholar 

  • Huggard, D. J., 1993 b: Prey selectivity of wolves in Banff National park. II. Age, sex, and condition of elk. Can. J. Zool.71, 140–147.

    Google Scholar 

  • Hunt, R. M., 1996: Biogeography of the order Carnivora. In:Gittleman, J. L. (ed.), Carnivore behavior, ecology, and evolution. Ithaca, New York: Comstock Publ. Associates, pp. 485–541.

    Google Scholar 

  • Jax, K., 1999: Natürliche Störungen: ein wichtiges Konzept für Ökologie und Naturschutz? Z. Ökol. Naturschutz7, 241–253.

    Google Scholar 

  • Jefferies, R. L.;Klein, D. R.;Shaver, G. R., 1994: Vertebrate herbivores and northern plant communities: reciprocal influences and responses. Oikos71, 193–206.

    Google Scholar 

  • Jobin, A.; Molinari, P.; Breitenmoser, U., 1999: Prädationsmuster des Eurasischen Luchses im Schweizer Jura. 3rd European Congress of Mammalogy, Jyvaskyla, Finland.

  • Kaji, K.;Yajima, T., 1992: Influence of Sika deer on forests of Nakanoshima Island, Hokkaido. In:Bobek, B.;Perzanowski, K.;Regelin, W. L. (eds.), Global trends in wildlife management. Krakow, Poland: Swiat Press, Vol. 2, pp. 215–218.

    Google Scholar 

  • Kay, C. E., 1995 a: Aboriginal overkill and native burning: implications for moden ecosystem management. West. J. Appl. For.10, 121–126.

    Google Scholar 

  • Kay, C. E., 1995 b: Browsing by native ungulates: effects on shrub and seed production in the Greater Yellowstone ecosystem. In:Roundy, B. A.; McArthur, E. D.; Haley, J. S.; Mann, D. K. (eds.), Proc. Wildland Shrub Arid Land Restor. Symp. Intermountain Res. Stn., Ogden, UT., pp. 310–320.

  • Kay, C. E., 1997 a: Aboriginal overkill and the biogeography of moose in western North America. Alces33, 141–164.

    Google Scholar 

  • Kay, C. E., 1997 b: Is aspen doomed? J. Forestry95, 4–11.

    Google Scholar 

  • Kay, C. E., 1998: Are ecosystems structured from the top-down or bottom-up: a new look at an old debate. Wildl. Soc. Bull.26, 484–498.

    Google Scholar 

  • Kay, C. E.;Walker, J. W., 1997: A comparison of sheep- and wildlife-grazed willow communities in the Greater Yellowstone ecosystem. Sheep & Goat Res. J.13, 6–14.

    Google Scholar 

  • Kay, J., 2000 in press: Ecosystems as self-organizing holarchic open systems: narratives and the second law of thermodynamics. In: Handbook of Ecology.

  • Keith, L. B., 1974: Some features of population dynamics of mammals. Proc. XI Intern. Congr. Game Biologists: 17–58.

  • Klingler, K., 1966: Sektionsbefunde von Rotwild aus dem schweizerischen Nationalpark und den umliegenden Gebieten. Ergebnisse d. wiss. Untersuchungen i. Schweizer Nationalpark11, 1–11.

    Google Scholar 

  • Koehler, G. M.;Hornocker, M. G., 1991: Seasonal resource use among mountain lions, bobcats, and coyotes. J. Mammal.72, 391–396.

    Google Scholar 

  • Krüsi, B. O.;Schütz, M.;Wildi, O.;Grämiger, H., 1995: Huftiere, Vegetationsdynamik und botanische Vielfalt im Nationalpark. Cratschla (Switzerland)3, 14–25.

    Google Scholar 

  • Kunkel, K. E.;Ruth, T. K.;Pletscher, D. H.;Hornocker, M. G., 1999: Winter prey selection by wolves and cougars in and near Glacier National park, Montana. J. Wildl. Manage.63, 901–910.

    Google Scholar 

  • Kunkel, K.;Pletscher, D. H., 1999: Species-specific population dynamics of cervids in a multipredator ecosystem. J. Wildl. Manage.63, 1082–1093.

    Google Scholar 

  • Larsen, D. G.;Gauthier, D. A.;Markel, R. L., 1989: Causes and rate of moose mortality in the southwest Yukon. J. Wildl. Manage.53, 548–557.

    Google Scholar 

  • Laudenslayer, W. F.;Darr, H. H., 1990: Historical effects of logging on the forests of the Cascade and Sierra Nevada ranges of California. Trans. West. Sec. Wildl. Soc.26, 12–23.

    Google Scholar 

  • Leopold, A., 1943: Deer irruptions. Wisconsin Conserv. Bull.8, 3–11.

    Google Scholar 

  • Lewis, M. A.;Murray, J. D., 1993: Modeling territoriality and wolf deer interactions. Nature366, 738–740.

    Article  Google Scholar 

  • Lima, S. L., 1992: Life in a multi-predator environment: some considerations for anti-predatory vigilance. Ann. Zool. Fennici29, 217–226.

    Google Scholar 

  • Lindzey, F. G.;Ackerman, B. B.;Barnhurst D.;Hemker, T. P., 1988: Survival rates of mountain lions in southern Utah. J. Wildl. Manage.52, 664–667.

    Google Scholar 

  • Lindzey, F. G.;Van Sickle, W. D.;Ackerman, B. B.;Barnhurst D. et al., 1994: Cougar population dynamics in southern Utah. J. Wildl. Manage.58, 619–624.

    Google Scholar 

  • Lindzey, F. G.;Van Sickle, W. D.;Laing S. P.;Mecham, C. S., 1992: Cougar population response to manipulation in southern Utah. Wildl. Soc. Bull.20, 224–227.

    Google Scholar 

  • Lotka, A. J., 1925: Elements of physical biology. Baltimore, USA: Williams and Wilkins.

    Google Scholar 

  • Mace, R. D.;Waller, J. S., 1997: Spatial and temporal interaction of male and female grizzly bears in northwestern Montana. J. Wildl. Manage.61, 39–52.

    Google Scholar 

  • Magnusson, M., 1993: Red deer and Scotland's Natural Heritage. Deer9, 19–22.

    Google Scholar 

  • Marshal, J. P.;Boutin, S., 1999: Power analysis of wolf-moose functional responses. J. Wildl. Manage.63, 396–402.

    Google Scholar 

  • Martin, F. R.;Krefting, L. W., 1953: The Necedah refuge deer irruption. J. Wildl. Manage.17, 166–176.

    Google Scholar 

  • Martin, L. D., 1989: Fossil history of the terrestrial carnivora. In:Gittleman, J. L. (ed.), Carnivore behavior, ecology, and evolution. Ithaca, New York: Comstock Publ. Associates, pp. 536–568.

    Google Scholar 

  • McCullough, D. R., 1997: Irruptive behavior in ungulates. In:McShea, W. J.;Underwood, H. B.;Rappole, J. H. (eds.), The science of overabundance: deer ecology and population management. Washington, USA: Smithsonian Inst. Press, pp. 69–98.

    Google Scholar 

  • McLaren, B. E.;Peterson, R. O., 1994: Wolves, moose, and tree rings on Isle Royal. Science266, 1555–1558.

    Google Scholar 

  • McShea, W. J.;Rappole, J. H., 1997: Herbivore and the ecology of forest understory birds. In:McShea, W. J.;Underwood, H. B.;Rappole, J. H. (eds.), The science of overabundance: deer ecology and population management. Washington, USA: Smithsonian Inst. Press, pp. 298–309.

    Google Scholar 

  • Mech, L. D., 1987: Age, season, distance, direction, and social aspects of wolf dispersal from a Minnesota pack. In:Chepko-Sade, B. D.;Tang Halpin, Z. (eds.), Mammalian dispersal patterns. Chicago, USA: The Univ. Chicago Press, pp. 55–74.

    Google Scholar 

  • Mech, L. D.; Karns, P. D., 1977: Role of the wolf in a deer decline in the superior National forest. USDA Forest Service, Research Paper NC-148, 23.

  • Messier, F., 1991: The significance of limiting and regulating factors on the demography of moose and white-tailed deer. J. Anim. Ecol.60, 377–393.

    Google Scholar 

  • Messier, F.;Crete, M., 1984: Body condition and population regulation by food resources in moose. Oecologia65, 44–50.

    Article  Google Scholar 

  • Messier, F.;Crete, M., 1985: Moose-wolf dynamics and the natural regulation of moose populations. Oecologia65, 503–512.

    Article  Google Scholar 

  • Miller, S. D.;White, G. C.;Sellers, R. A.;Reynolds, H. V. et al., 1997: Brown and black bear density estimation in Alaska using radiotelemetry and replicated mark-resight techniques. Wildl. Monogr.133, 55.

    Google Scholar 

  • Mitchell, B.;Staines, B. W., 1976: An example of natural winter mortality in Scottish red deer. Deer3, 549–552.

    Google Scholar 

  • Molvar, E. M.;Bowyer, R. T.;Van Ballenberghe, V., 1993: Moose herbivory, browse quality, and nutrient cycling in an Alaskan treeline community. Oecologia94, 472–479.

    Google Scholar 

  • Morowitz, H. J., 1968: Energy flow in biology. New York: Academic Press, Inc. 179 pp.

    Google Scholar 

  • Munro, R., 1989: Deer mortality at Camusrory: a veterinary report. Deer7, 528–529.

    Google Scholar 

  • Muszynska, M., 1996: Comparison of the spring and summer diet of the wolf and the red fox in the Bieszczady mountains. J. Wildl. Res.1, 182–185.

    Google Scholar 

  • Norris, S., 2000: Reading between the lines. BioScience50, 389–394.

    Google Scholar 

  • Novaro, A. J.;Funes, M. C.;Walker, R. S., 2000: Ecological extinction of native prey of a carnivore assemblage in Argentine Patagonia. Biol. Conserv.92, 25–33.

    Article  Google Scholar 

  • Odum, E. P., 1991: Prinzipien der Ökologie: Lebensräume, Stoffkreisläufe, Wachstumsgrenzen. Heidelberg, Germany: Spektrum-der-Wissenschaft-Verlagsgesells. 305 pp.

    Google Scholar 

  • Odum, H. T.;Pinkerton, R. C., 1955: Times speed regulation, the optimum efficiency for maximum output in physical and biological systems. Amer. Sci.43, 331–343.

    Google Scholar 

  • Okarma, H.;Jedrzejewski, W.;Schmidt, K.;Kowalczyk, R. et al., 1997: Predation of Eurasian lynx on roe deer and red deer in Bialowieza Primeval forest, Poland. Acta Theriol.42, 203–224.

    Google Scholar 

  • Paquet, P. C., 1992: Prey use strategies of sympatric wolves and coyotes in Riding Mountain National Park, Manitoba. J. Mamm.73, 337–343.

    Google Scholar 

  • Parker, G. R.;Maxwell, L. W.;Morton, L. D.;Smith, G. E., 1983: The ecology of the lynx(Lynx canadensis) on Cape Breton island. Can. J. Zool.61, 770–786.

    Google Scholar 

  • Pechacek, P., 1994: Einfluss der Wölfe auf Schalenwild in der Slowakei. Allg. Forstzeitschrift19, 1058–1060.

    Google Scholar 

  • Peterson, R. O., 1988: The pit or the pendulum: issues in large carnivore management in natural ecosystems. Ecosystem Management for Parks and Wilderness: 105–115.

  • Pletscher, D. H.;Ream, R. R.;Boyd, D. K.;Fairchild, M. W. et al., 1997: Population dynamics of a recolonizing wolf population. J. Wildl. Manage.61, 459–465.

    Google Scholar 

  • Pollack, E. M., 1951: Food habits of the bobcat in the New England states. J. Wildl. Manage.15, 209–213.

    Google Scholar 

  • Poole, K. G., 1994: Characteristics of an unharvested lynx population during a snowshoe hare decline. J. Wildl. Manage.58, 608–618.

    Google Scholar 

  • Putman, R. J.;Edwards, P. J.;Mann, J. C.;How, R. C. et al., 1989: Vegetational and faunal changes in an area of heavily grazed woodland following relief of grazing. Biol. Conserv.47, 13–32.

    Article  Google Scholar 

  • Pyrah, D., 1984: Social distribution and population estimates of coyotes in North-Central Montana. J. Wildl. Manage.48, 679–690.

    Google Scholar 

  • Reig, S.;Guesta, L.;Palacios, F.;Barcena, F., 1992: Status of the wolf in Spain. In: Bobek, B.;Perzanowski, K.;Regelin, W. L. (eds.), Global trends in wildlife management. Krakow, Poland: Swiat Press, Vol. 2, pp. 371–374.

    Google Scholar 

  • Riney, T., 1964: The impact of introductions of large herbivores on the tropical environment. IUCN Publ. New Series: 261–273.

  • Runkle, J. R., 1990: Gap dynamics in an Ohio Acer-Fagus forest and speculations on the geography of disturbance. Can. J. For. Res.20, 632–641.

    Google Scholar 

  • Sacks, B. N.;Jaeger, M. M.;Neale, J. C.;McCullough, D. R., 1999: Territoriality and breeding status of coyotes relative to sheep predation. J. Wildl. Manage.63, 593–605.

    Google Scholar 

  • Saether, B. E.;Andersen, R., 1996: Ecological correlates of regional variation in life history of the mooseAlces alces. Ecology77, 1493–1500.

    Google Scholar 

  • Sandell, M., 1989: The mating tactics and spacing patterns of solitary carnivores. In:Gittleman, J. L. (ed.), Carnivore behavior, ecology, and evolution. Ithaca, New York: Comstock Publ. Associates, pp. 164–182.

    Google Scholar 

  • Schaefer, J. A.;Veitch, A. M.;Harrington, F. H.;Brown, W. K. et al., 1999: Demography of decline of the Red Wine Mountain caribou herd. J. Wildl. Manage.63, 580–587.

    Google Scholar 

  • Schmidt, J. L.;Gilbert, D. L., 1978: Big Game of North America. Harrisburg, PA: Stackpole Books. 494 pp.

    Google Scholar 

  • Schneider, E. D., 1988: Thermodynamics, ecological succession, and natural selection: a common thread. In:Weber, B. H.;Depew, D. J.;Smith, J. D. (eds.), Entropy, Information, and Evolution. Cambridge, Mass.: MIT Press, pp. 107–138.

    Google Scholar 

  • Schneider, E. D.;Kay, J. J., 1994: Complexity and thermodynamics: towards a new ecology. Futures24, 626–647.

    Article  Google Scholar 

  • Schwartz, C. C.;Franzmann, A. W., 1991: Interrelationship of black bears to moose and forest succession in northern coniferous forest. Wildl. Monogr.113, 58.

    Google Scholar 

  • Seidensticker, J. C.;Hornocker, M. G.;Wiles, W. V.;Messick, J. P., 1973: Mountain lion social organization in the Idaho primitive area. Wildl. Monogr.35, 1–60.

    Google Scholar 

  • Shanahan, T., 2000: Evolutionary progress? BioScience50, 451–459.

    Google Scholar 

  • Sinclair, A. R. E., 1997: Carrying capacity and the overabundance of deer. In:McShea, W.J.;Underwood, H. B.;Rappole, J. H. (eds.), The science of overabundance: deer ecology and population management. Washington, USA: Smithsonian Inst. Press, pp. 380–394.

    Google Scholar 

  • Singer, F. J.;Harting, A.;Symonds, K. K.;Coughenour, M. B., 1997: Density dependence, compensation, and environmental effects on elk calf mortality in Yellowstone National park. J. Wildl. Manage.61, 12–25.

    Google Scholar 

  • Singer, F. J.;Swift, D. M.;Coughenour, M. B.;Varley, J. D., 1998: Thunder on the Yellowstone revisited: an assessment of management of native ungulates by natural regulation, 1968–1993. Wildl. Soc. Bull.26, 375–390.

    Google Scholar 

  • Skogland, T., 1991: Ungulate foraging strategies: optimization for avoiding predation or competition for limiting resources. In:Bobek, B.;Perzanowski, K.;Regelin, W. L. (eds.), Global trends in wildlife management. Krakow, Poland: Swiat Press, Vol. 1, pp. 161–167.

    Google Scholar 

  • Slough, B. G.;Mowat, G., 1996: Lynx population dynamics in an untrapped refugium. J. Wildl. Manage.60, 946–961.

    Google Scholar 

  • Smith, B. L.; Robbins, R. L., 1994: Migrations and management of the Jackson elk herd. U. S. Dept. Interior, Nat. Biol. Survey, Resources Publ.199, 61.

  • Smith-Flueck, J. M.; Flueck, W. T., 1996: Natural mortality patterns in an endangered Andean cervid population. Third Ann. Conf. The Wildl. Soc.: 154–155.

  • Smith-Flueck, J. M.;Flueck, W. T., 1997: Revelamiento de una población de huemul en la provincia de Río Negro, Argentina. J. Neotrop. Mammal.4, 25–33.

    Google Scholar 

  • Solomon, M. E., 1949: The natural control of animal populations. J. Anim. Ecol.18, 1–32.

    Google Scholar 

  • Soule, M. E.;Terborgh, J., 1999: Conserving nature at regional and continental scales — a scientific program for North America. BioScience49, 809–817.

    Google Scholar 

  • Spreadbury, B. R.;Musil, K.;Musil, J.;Kaisner, C. et al., 1996: Cougar population characteristics in southeastern British Columbia. J. Wildl. Manage.60, 962–969.

    Google Scholar 

  • Stepanov, Y. V.;Pole, S. B., 1996: Numbers of wolves and the attitude towards them in Kazakhstan during recent decades. J. Wildl. Res.1, 321–322.

    Google Scholar 

  • Stromayer, K. A.;Warren, R. J., 1997: Are overabundant deer herds in the eastern United States creating alternate stable states in forest plant communitites? Wildl. Soc. Bull.25, 227–234.

    Google Scholar 

  • Taylor, R. J.;Pekins, P. J., 1991: Territory boundary avoidance as a stabilizing factor in wolf-deer interactions. Theoretical Pop. Biol.39, 115–128.

    Article  Google Scholar 

  • Terborgh, J., 1988: The big things that run the world — a sequel to E. O. Wilson. Conserv. Biol.2, 402–403.

    Article  Google Scholar 

  • The Red Deer Commission, 1989: Natural mortality in red deer stocks in Scotland. Deer7, 545–546.

    Google Scholar 

  • Thurber, J. M.;Peterson, R. O., 1991: Changes in body size associated with range expansion in the coyote(Canis latrans). J. Mamm.72, 750–755.

    Google Scholar 

  • Tomialojc, L., 1991: Characteristics of old growth in the Bialowieza Forest, Poland. Natural Areas J.11, 7–18.

    Google Scholar 

  • Ulanowicz, R. E., 1996: The propensities of evolving systems. In:Khalil, E. L.;Bouldign, K. E. (eds.), Evolution, order and complexity. London: Routledge, pp. 217–233.

    Google Scholar 

  • Ulanowicz, R. E., 1997: Ecology, the ascending perspective. New York: Columbia Univ. Press. pp. 1–224.

    Google Scholar 

  • Ulanowicz, R. E., 1999: Life after Newton: an ecological metaphysic. BioSystems50, 127–142.

    Article  PubMed  Google Scholar 

  • Ulanowicz, R. E.;Abarca-Arenas, L. G., 1997: An informational synthesis of ecosystem structure and function. Ecol. Modeling95, 1–10.

    Article  Google Scholar 

  • Van Valkenburgh, B., 1995: Tracking ecology over geological time: evolution within guilds of vertebrates. Trends Ecol. Evol.10, 71–75.

    Article  Google Scholar 

  • Van Wieren, S. E., 1989: The management of populations of large mammals. In:Spellerberg, I. F.;Goldsmith, F. B.;Morris, M. G. (eds.), The scientific management of temperate communitites for conservation. London: Blackwell Scientific Publisher, pp. 103–127.

    Google Scholar 

  • Veitch, A. M.;Krizan, P. K., 1996: Black bear predation on vertebrates in northern Labrador. J. Wildl. Res.1, 193–194.

    Google Scholar 

  • Vermeij, G. J., 1994: The evolutionary interaction among species: selection, escalation, and coevolution. Ann. Rev. Ecol. System.25, 219–236.

    Article  Google Scholar 

  • Waser, P. M., 1996: Patterns and consequences of dispersal in gregarious carnivores. In:Gittleman, J. L. (ed.), Carnivore behavior, ecology, and evolution. Ithaca, New York: Comstock Publ. Associates, pp. 267–295.

    Google Scholar 

  • Weber, B. H.;Depew, D. J.;Dyke, C.;Salthe, S. N. et al., 1989: Evolution in thermodynamic perspective: an ecological approach. Biology and Philosophy4, 373–405.

    Article  Google Scholar 

  • Werdelin, L., 1996: Carnivoran ecomorphology: a phylogenetic perspective. In:Gittleman, J. L. (ed.), Carnivore behavior, ecology, and evolution. Ithaca, New York: Comstock Publ. Associates, pp. 582–624.

    Google Scholar 

  • White, C. A.;Bartmann, C. E.;Kay, C. E., 1998: Aspen, elk, and fire in the Rocky Mountain national parks of North America. Wildl. Soc. Bull.26, 449–462.

    Google Scholar 

  • White, G. C.;Bartmann, R. M., 1997: Density dependence in deer populations. In:McShea, W. J.;Underwood, H. B.;Rappole, J. H. (eds.), The science of overabundance: deer ecology and population management. Washington, USA: Smithsonian Inst. Press, pp. 120–135.

    Google Scholar 

  • Whitman, J. S.;Ballard, W. B.;Gardner, C. L., 1986: Home range and habitat use by wolverines in southcentral Alaska. J. Wildl. Manage.50, 460–463.

    Google Scholar 

  • Whittaker, D. G.;Lindzey, F. G., 1999: Effect of coyote predation on early fawn survival in sympatric deer species. Wildl. Soc. Bull.27, 256–262.

    Google Scholar 

  • Wielgus, R. B.;Bunnell, F. L., 1994: Sexual segregation and females grizzly bear avoidance of males. J. Wildl. Manage.58, 405–413.

    Google Scholar 

  • Wilcox, D. L.;MacCluer, J. W., 1979: Coevolution in predator-prey systems: a saturation kinetic model. Am. Naturalist113, 163–183.

    Article  Google Scholar 

  • Yevtikov, S. A., 1991: Natural mortality rate in European moose. In:Bobek, B.;Perzanowski, K.;Regelin, W. L. (eds.), Global trends in wildlife management. Krakow, Poland: Swiat Press, Vol. 1, pp. 653–654.

    Google Scholar 

  • Young, D. D.;McCabe, T. R., 1997: Grizzly bear predation rates on caribou calves in northeastern Alaska. J. Wildl. Manage.61, 1056–1066.

    Google Scholar 

  • Ytrehus, B.;Skagemo, H.;Stuve, G.;Sivertsen, T. et al., 1999: Osteoporosis, bone mineralization, and status of selected trace elements in two populations of moose calves in Norway. J. Wildl. Dis.35, 204–211.

    PubMed  Google Scholar 

  • Zheleznov, N. K., 1992: Ecology of the grey wolf(Canis lupus) on Chukotka. In:Bobek, B.; Perzanowski, K.;Regelin, W. L. (eds.). Krakow, Poland: Swiat Press, pp. 381–384.

    Google Scholar 

  • Zheleznov, N. K., 1996: Large predators of the far north-east of Russia. J. Wildl. Res.1, 112–116.

    Google Scholar 

  • Zoller, H., 1993: Menschliche Nutzung im Unterengadin während vor-und frühgeschichtlicher Zeit. Cratschla (Switzerland)1, 16–24.

    Google Scholar 

  • Zoller, H.;Haas, J. N., 1995: War Mitteleuropa ursprünglich eine halboffene Weidelandschaft oder von geschlossenen Wäldern bedeckt? Schweiz. Z. Forstwes.146, 321–354.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Eingesetzt wurde ein Druckkostenzuschuss des Bayerischen Staatsministeriums für Ernährung, Landwirtschaft und Forsten, für dessen Gewährung verbindlich gedankt wird. — Die Schriftleitung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flueck, W.T. Population regulation in large northern herbivores: evolution, thermodynamics, and large predators. Zeitschrift für Jagdwissenschaft 46, 139–166 (2000). https://doi.org/10.1007/BF02241353

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02241353

Keywords

Navigation