Skip to main content
Log in

Functional importance of α-activity in the visual cortex during recognition of images and movement

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

Twenty-seven studies were carried out on the recognition of the shapes of geometrical figures of different sizes by healthy adults, on the recognition of the direction of movement of a light spot within the field of vision, and of visual illusions produced by rhythmic visual stimulation. Tachystoscopic presentation of figures and the onset of movement were synchronized with different phases of the EEG α-rhythm in the occipital region. In controls, stimuli were presented without a shift in the α-rhythm. Recognition improved significantly when small figures were presented at relatively late phases of the α-wave and when large figures (up to 9°) were presented at relatively early phases. Recognition of the side and direction of apparent movement (in the left or right halves of the visual field and centrifugal or centripetal) depended on the phase of the α-wave only for nonuniform (accelerating or decelerating, depending on direction) movement, allowing for the cortical magnification factor. Centrifugal movements in experiments were recognized better than in controls, while centripetal movements were recognized worse, and elicited a relatively long-latency movement response. Diffuse rhythmic light stimulation at the α-rhythm frequency produced the illusory percept of a ring or circle in 11 of 12 subjects. The optimal stimulation frequency for this was tightly connected with the dominant α-rhythm frequency, with a correlation coefficient of 0.86. The link between these effects and the propagation of the wave process through the visual cortex, as reflected by the EEG α-rhythm, is discussed. The data support the hypothesis of Pitts and McCulloch [29], which proposes scanning of the visual cortex by a wave process operating at the frequency of the α-rhythm, which reads information from the visual cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Blinkov and I. I. Glezer, The Human Brain in Numbers and Tables [in Russian], Leningrad (1964).

  2. V. I. Gusel'nikov and A. G. Iznak, Rhythmic Activity in Sensory Systems [in Russian], Moscow (1983).

  3. V. M. Kamenkovich, I. A. Shevelev, and N. B. Kostelyanets, “Assessment of the direction of regular and irregular movements and the EEG alpha rhythm,” Zh. Vyssh. Nerv. Deyat.,45, No. 2, 368–376 (1995).

    Google Scholar 

  4. N. B. Kostelyanets, V. M. Kamenkovich, and G. A. Sharaev, “Anisotropy and asymmetry in the visual perception of movement,” Fiziol. Cheloveka,18, 76–80 (1992).

    Google Scholar 

  5. N. B. Kostelyanets, I. A. Sheveleva, V. M. Kamenkovich, and G. A. Sharaev, “Interhemisphere asymmetry in the visual perception of movement,” Sensor. Sistemy,3, No. 3, 302–306 (1989).

    Google Scholar 

  6. I. A. Sheveleva, V. M. Kamenkovich, and G. A. Sharaev, “Visual illusions and the EEG alpha rhythm,” Zh. Vyssh. Nerv. Deyat.,46, No. 1, 34–39 (1996).

    Google Scholar 

  7. I. A. Shevelev, N. B. Kostelyanets, V. M. Kamenkovich, G. A. Sharaev, and V. A. Il'yanok, “The electroencephalogram and computed information in the human visual cortex on image recognition,” Fiziol. Cheloveka,11, No. 5, 707–711 (1985).

    PubMed  CAS  Google Scholar 

  8. I. A. Shevelev, N. B. Kostelyanets, V. M. Kamenkovich, and G. A. Sharaev, “Image recognition at different distances from the fixation point depending on the phase of the EEG alpha wave,” Sensor. Sistemy,2, No. 4, 368–374 (1988).

    Google Scholar 

  9. I. A. Shevelev, N. B. Kostelyanets, V. M. Kamenkovich, et al., “Movement recognition and EEG alpha wave phases,” Sensor. Sistemy,5, No. 3, 54–59 (1991).

    Google Scholar 

  10. K. Ball and R. Seculer, “Human vision favors centrifugal motion,” Perception,9, 317 (1980).

    PubMed  CAS  Google Scholar 

  11. J. S. Barlow, The Electroencephalogram. Its Patterns and Origins, London (1993).

    Google Scholar 

  12. J. A. V. Bates, “The electrical activity of the cortex accompanying movement,” J. Physiol. (L.),111, 240 (1951).

    Google Scholar 

  13. N. P. Bechtereva and V. V. Zontov, “The relationship between certain forms of potentials and the variations in brain excitability,” EEG Clin. Neurophysiol.,14, 320–330 (1962).

    Article  CAS  Google Scholar 

  14. Z. Bohdanecky, V. Bozkov, and T. Radill-Weiss, “Visual stimulus threshold related to EEG alpha and non-alpha epochs,” Acta Neurobiol. Exp.,43, 215–220 (1983).

    CAS  Google Scholar 

  15. M. Chatila, C. Milleret, A. Rougeul, and P. Buser, “Alpha-rhythm in the cat thalamus,” C. R. Acad. Sci. Ser.III-Vie,316, 51–58 (1993).

    CAS  Google Scholar 

  16. A. Cowey and E. T. Rolls, “Human cortical magnification factor and its relation to visual acuity,” Exp. Brain Res.,21, 447–454 (1974).

    Article  PubMed  CAS  Google Scholar 

  17. K. J. W. Craik, The Nature of Explanation (1943).

  18. K. R. Delaney, A. Gelperin, M. S. Fee, J. A. Flores, R. Gervais, D. W. Tank, and D. Kleinfeld, “Waves and stimulus-modulated dynamics in an oscillating olfactory network,” Proc. Natl. Acad. Sci. USA,91, 669–673 (1994).

    Article  PubMed  CAS  Google Scholar 

  19. C. Enroth-Cugell and I. G. Robson, “The contrast sensitivity of retinal ganglion cells of the cat,” J. Physiol. (L.),187, 517 (1966).

    CAS  Google Scholar 

  20. A. M. Gorbach, E. N. Tsicalov, G. D. Kuznetsova, I. A. Shevelev, K. P. Budko, and G. A. Sharaev, “Infrared mapping of the cerebral cortex,” Thermology, 108–112 (1989).

  21. A. F. Iznak, “Some neurophysiological mechanisms of information processing modulation during EEG rhythmic activity,” in: 5th Int. Congr. Psychophysiol., Budapest (1990).

  22. N. B. Kostelianetz, V. M. Kamenkovich, and G. A. Sharaev, “Anisotropy and interhemispheric asymmetry in movement perception,” Perception,18, 523 (1989).

    Google Scholar 

  23. M. S. Livingstone and D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement and depth,” J. Neurosci.,7, 3416–3468 (1987).

    PubMed  CAS  Google Scholar 

  24. F. Lopes da Silva, “Neural mechanisms underlying brain waves: from neural membranes to networks,” EEG Clin. Neurophysiol.,79, No. 2, 81 (1991).

    Article  CAS  Google Scholar 

  25. D. M. Mackay, “Experiments on the perception of patterns modulated at alpha frequency,” EEG Clin Neurol.,5, 559 (1953).

    Article  CAS  Google Scholar 

  26. O. N. Markand, “Alpha rhythms,” J. Clin. Neurophysiol.,7, No. 2, 163–189 (1990).

    Article  PubMed  CAS  Google Scholar 

  27. S. Mateeff and J. Hohnsbein, “Perceptual latencies are shorter for motion towards the fovea than for motion away,” Vision Res.,28, 711–719 (1988).

    Article  PubMed  CAS  Google Scholar 

  28. G. A. Orban, Neuronal Operations in the Visual Cortex, Berlin (1984).

  29. W. Pitts and W. S. McCulloch, “How we know universals. The perception of auditory and visual forms,” Bull. Math. Biophys.,9, 127–147 (1947).

    CAS  PubMed  Google Scholar 

  30. W. B. Plotkin, “On the self-regulation of the occipital alpha rhythm: central strategies, states of consciousness and the role of physiological feedback,” J. Exp. Psychol.,105, 66 (1976).

    CAS  Google Scholar 

  31. T. Radill, J. Radilova, Z. Bohdanecky, and V. Bozkov, “Psychophysiology of unconscious and conscious phenomena during visual perception,” IBRO News,12, No. 1, 15 (1984).

    Google Scholar 

  32. J. E. Raymond, “Directional anisotropy of motion sensitivity across the visual field,” Vision Res.,34, 1029–1037 (1994).

    Article  PubMed  CAS  Google Scholar 

  33. E. L. Schwartz, “Computational anatomy and functional architecture of striate cortex: a spatial mapping approach to perceptual coding,” Vision Res.,20, 645–669 (1981).

    Article  Google Scholar 

  34. R. Sekuler, S. Anstis, O. J. Braddick, T. Brandt, J. A. Movshon, and G. Orban, “The perception of motion,” in: Visual Perception. The Neurophysiological Foundations, L. Spillman and J. S. Werner (eds.), New York (1990).

  35. I. A. Shevelev, “Temperature topography of the brain cortex. Thermoencephaloscopy,” Brain Topogr.,5, No. 2, 77–85 (1993).

    Article  Google Scholar 

  36. I. A. Shevelev, “Scanning alpha wave in visual cortex and recognition of images and motion,” Brain Processes, Theories and Models, R. Moreno-Diaz and J. Mira-Mira (eds.), Cambridge, Mass. (1995).

  37. I. A. Shevelev, N. B. Kostelianetz, V. M. Kamenkovich, and G. A. Sharaev, “EEG alpha-wave in the visual cortex: check of the hypothesis of the scanning process,” Int. J. Psychophysiol.,11, 195–201 (1991).

    Article  PubMed  CAS  Google Scholar 

  38. I. A. Shevelev and E. N. Tsicalov, “Thermal waves spreading over the cerebral cortex,” Neuroscience (1996) (in press).

  39. F. J. Varela, A. Toro, E. R. John, and E. L. Schwartz, “Perceptual framing and cortical alpha rhythm,” Neuropsychol.,19, 675–686 (1981).

    Article  CAS  Google Scholar 

  40. E. G. Walsh, “Visual reaction time and the alpha-rhythm, an investigation of a scanning hypothesis,” J. Physiol. (L.),118, 500 (1952).

    CAS  Google Scholar 

  41. W. G. Walter, The Living Brain, London (1953).

  42. D. Whitteridge and E. G. Walsh, “The physiological basis of the electroencephalogram,” in: Electroencephalography, D. Hill and G. Parr (eds.), London (1963).

Download references

Authors

Additional information

Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Street, 117865 Moscow, Russia. Translated from Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 82, No. 10-11, pp. 20–33, October–November, 1996.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shevelev, I.A. Functional importance of α-activity in the visual cortex during recognition of images and movement. Neurosci Behav Physiol 28, 186–197 (1998). https://doi.org/10.1007/BF02461966

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02461966

Key words

Navigation