Skip to main content
Log in

Effects of changes in dynamic equilibrium in microtubule and microfilament systems on the plastic responses of neurons

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

Studies were carried out on the effects of disruption and stabilization of microtubules and microfilaments on the formation of neuronal plastic responses in isolated nerve cells of the molluskLymnaea stagnalis. Disruption of these cytoskeletal elements prevented the development of neuronal plastic responses. Microtubule stabilization produced a dynamic relationship between the development and retention of neuronal plastic responses and series of stimuli. Stabilization of microfilaments blocked the development but promoted the retention of these neuronal responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. M. Balaban, O. A. Maksimova, and N. I. Bravarenko, “Plastic forms of behavior in the edible snail and their neuronal mechanisms,” Zh. Vyssh. Nerv. Deyat.,42, No. 6, 1208 (1992).

    CAS  Google Scholar 

  2. L. Sh. Ganelina and T. P. Nekrasova, “Protein kinase C and its role in normal and transformed cells,” Tsitologiya,31, No. 2, 131 (1989).

    CAS  Google Scholar 

  3. D. A. Moshkov, Adaptation and the Ultrastructure of the Neuron [in Russian], Nauka, Moscow (1985).

    Google Scholar 

  4. A. S. Ratushnyak and T. A. Zapara, “The effect of microfilament stabilization on rearrangements of neuron responses,” Dokl. Akad. Nauk SSSR,318, No. 2, 492 (1991).

    Google Scholar 

  5. V. A. Tkachuk, “The role and place of cyclic nucleotides in the neuroendocrine regulation of cells and tissues,” Biol. Nauki, No. 6, 5 (1987).

    PubMed  Google Scholar 

  6. Yu. V. Chistyakova and E. V. Parfenova, “Ca-Protease—an enzyme involved in the metabolism of cytoskeleton proteins in the olfactory pavement in vertebrates,” Tsitologiya, No. 11, 1345 (1989).

    Google Scholar 

  7. D. L. Alkon and H. Rasmussen, “A spatial-temporal model of cell activation,” Science,239, No. 4843 988 (1988).

    Google Scholar 

  8. Ch. Aoki and Ph. Siekevitz, “Ontogenetic changes in the cyclic adenosine 3,5-monophosphate-stimulatable phosphorylation of cat visual cortex proteins, particularly of microtubule-associated protein 2 (MAP2): effects of normal and dark rearing and of the exposure to light,” J. Neurosci.,5, No. 9, 2465 (1985).

    PubMed  CAS  Google Scholar 

  9. V. Bennet, K. Gardner, and J. Steiner, “Brain adducin: a protein kinase C substrate that may mediate site-directed assembly at the spectrin-actin junction,” J. Biol. Chem.,263, No. 12, 5860 (1988).

    Google Scholar 

  10. D. Bigot and S. P. Hunt, “Effect of excitatory amino acids on microtubilin-associated proteins in cultured cortical and spinal neurons,” Neurosci. Lett.,111, No. 2, 275 (1990).

    Article  PubMed  CAS  Google Scholar 

  11. M. R. Costa and W. A. Catterall, “Cyclic AMP-dependent phosphorylation of the—subunit of the sodium channel in synaptic nerve-ending particles,” J. Biol. Chem.,259, No. 13, 8210 (1984).

    PubMed  CAS  Google Scholar 

  12. M. R. C. Costa and W. A. Catterall, “Phosphorylation of the—subunit of the sodium channel by protein kinase C,” Cell. Molec. Neurobiol.,4, No. 3, 291 (1984).

    Article  PubMed  CAS  Google Scholar 

  13. S. A. Deriemer, et al., “Enhancement of the sodium current inAplysia neurons by phorbol ester and protein kinase C,” Nature,313, No. 600, 313 (1985).

    Article  PubMed  CAS  Google Scholar 

  14. D. A. Ewald, A. Williams, and I. B Levitan, “Modulation of single Ca-dependent K-channel activity by protein phosphorylation,” Nature,315, No. 6019, 503 (1985).

    Article  PubMed  CAS  Google Scholar 

  15. J. Farley and S. Aurbach, “Protein kinase C activation induces conductance changes inHermissenda photoreceptors like those seen in associative learning,” Nature,219, No. 6050, 220 (1986).

    Article  Google Scholar 

  16. J. Fukuda, M. Kameyama, and K. Yamaguchi, “Breakdown of cytoskeletal filaments selectively reduces Na and Ca spikes in cultures mammal neurons,” Nature,294, No. 5, 82.

  17. B. Hochner, et al., “Action-potential duration and the modulation of transmitter release from the sensory neurons ofAplysia in presynaptic facilitation and behavioral sensitization,” Proc. Natl. Acad. Sci. USA,83, No. 21, 8410 (1986).

    Article  PubMed  CAS  Google Scholar 

  18. J. T. Neary and D. L. Alkon, “Protein phosphorylation/dephosphorylation and the transient voltage-dependent potassium conductance inHermissenda crassicorus,” J. Biol. Chem.,258, No. 14, 8979 (1983).

    PubMed  CAS  Google Scholar 

  19. E. J. Neer and D. E. Clapham, “Roles of G protein subunits in transmembrane signaling,” Nature,333, No. 6169, 129 (1988).

    Article  PubMed  CAS  Google Scholar 

  20. F. Noel, et al., “Long-term changes in synthesis of intermediate filament protein actin and other proteins in pleural sensory neurons ofAplysia produced by an in vitro analogue of sensitization,” Mol. Brain Res.,19, No. 3, 203 (1993).

    Article  PubMed  CAS  Google Scholar 

  21. L. S. Perlmutter, et al., “Distribution of calcium-activated protease calpain in the rat brain,” J. Comp. Neurol.,296, No. 2, 269 (1990).

    Article  PubMed  CAS  Google Scholar 

  22. A. S. Ratushnyak and T. A. Zapara, “Experimental analysis of mechanisms of information fixation by means of molecular neuroprocessor,” in: Molecular Electronics, P. I. Lazarev (ed.), Kluwer Academic Publishers, Netherlands (1991), p. 219.

    Google Scholar 

  23. C. Rosenmund and G. L. Westbrook, “Calcium-induced actin depolymerization reduces NMDA channel activity,” Neuron,10, No. 5, 805 (1993).

    Article  PubMed  CAS  Google Scholar 

  24. M. H. Wolf, et al., “A model of intracellular translocation of protein kinase C involving synergism between Ca and phorbol esters,” Nature, No. 317, 546 (1985).

    Article  PubMed  CAS  Google Scholar 

  25. T. A. Zapara, A. S. Ratushnyak, and M. B. Shtark, “Local changes of transmembrane currents at plastic reorganizations of electrogenesis of isolated neurons of the snail,” Neurosci. Behav. Physiol.,19, No. 3, 140 (1989).

    Article  Google Scholar 

Download references

Authors

Additional information

Institute of Computer Technology, Russian Academy of Sciences, Siberian Branch, Novosibirsk. Translated from Zhurnal Vysshei Nervnoi Deyatel'nosti, Vol. 46, No. 2, pp. 355–362, March–April, 1996.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ratushnyak, A.S., Zapara, T.A., Zharkikh, A.A. et al. Effects of changes in dynamic equilibrium in microtubule and microfilament systems on the plastic responses of neurons. Neurosci Behav Physiol 27, 353–359 (1997). https://doi.org/10.1007/BF02462935

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02462935

Keywords

Navigation