Skip to main content
Log in

Monoclonal antibodies to proteins of the myelin-like sheath of earthworm giant axons show cross-reactivity to crayfish CNS glia: An immunogold electron microscopy study

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Monoclonal antibodies were generated to the proteins in myelin-like membranes isolated from the nerve cords of the earthworm,Lumbricus terrestris. One of these showing cross-reactivity to 30–32 and 40 kDa proteins was shown by immunofluorescence microscopy and immunogold electron microscopy to be bound primarily to glial cell processes and their membranes and the myelin-like layers. This antibody cross-reacted with proteins of 60–65, 42, and 40 kDa in crayfish (Procambarus clarki) nerve cord homogenates. Localization by immunoelectron microscopy showed the antibody to be bound exclusively to the membranes of the glial processes ensheathing the axons in the crayfish nerve cord. Thus, the proteins in earthworm and crayfish glial cell membranes have some epitopes in common. We suggest that this may represent an evolutionary conservation of these proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Coggeshall, R. E. 1965. A fine structural analysis of the ventral nerve cord and associated sheath ofLumbricus terrestris L. J. Comp. Neurol. 125:393–438.

    Article  PubMed  CAS  Google Scholar 

  2. Levi, J. U., Cowden, R. R., and Collins, G. H. 1966. The microscopic anatomy and ultrastructure of the nervous system in the earthworm (Lumbricus sp.) with emphasis on the relationship between glial cells and neurons. J. Comp. Neurol. 127:489–510.

    Article  PubMed  CAS  Google Scholar 

  3. Roots, B. I., and Lane, N. J. 1983. Myelinating glia of earthworm giant axons: Thermally induced intramembranous changes. Tiss. Cell 15:695–709.

    Article  CAS  Google Scholar 

  4. Pereyra, P., and Roots, B. I. 1995 (in preparation).

  5. Pereyra, P., and Roots, B. I. 1988. Isolation and initial characterization of myelin-like membrane fractions from the nerve cord of earthworms (Lumbricus terrestris L.). Neurochem. Res. 13:893–901.

    Article  PubMed  CAS  Google Scholar 

  6. Heuser, J. E., and Doggenweiller, C. F. 1966. The fine structural organization of nerve fibers, sheaths, and glial cells in the prawn,Paleomonetes vulgaris. J. Cell Biol. 30:381–403.

    Article  PubMed  CAS  Google Scholar 

  7. Okamura, N., Yamaguchi, H., Stoskopf, M., Kishimoto, Y., and Saida, T. 1986. Isolation and characterization of multilayered sheath membrane rich in glucocerebroside from shrimp ventral nerve. J. Neurochem. 47:1111–1117

    Article  PubMed  CAS  Google Scholar 

  8. McAlear, J. H., Milburn, N. S., and Chapman, G. B. 1958. The fine structure of Schwann cells, Nodes of Ranvier, and Schmidt-Lanterman incisures in the central nervous system of the crab,Cancer irroratus. J. Ultrastruct. Res. 2:171–176.

    Article  PubMed  CAS  Google Scholar 

  9. Stirling, C. A. 1972. The lateral giant fiber to motor giant fiber synapse in crayfish.In Arceneaux, C. J. (ed.), 30th Ann. Proc. Electron Microscopy Soc., Amer. Los Angeles, Calif.

  10. Johnson, G. E. 1924. Giant nerve fibers in crustaceans with special reference toCambarus andPaleomonetes. J. Comp. Neurol. 36:323–373.

    Article  Google Scholar 

  11. Roots, B. I. 1978. A phylogenetic approach to the anatomy of glia. Pages 45–54,in Schoffeneils, E., et al., (eds.), Dynamic Properties of Glial Cells, Pergamon Press, New York.

    Google Scholar 

  12. Galfre, G., Howe, S. C., Milstein, C., and Scharaff, M. D. 1977. A simple method for polyethylene glycol-promoted hybridization of mouse myeloma cells. Somatic Cell Genet. 3:231–236.

    Article  Google Scholar 

  13. Harlow, E., and Lane, D. 1988. Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 726 pages.

  14. Reynolds, E. S. 1963. The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J. Cell Biol. 17:208–212.

    Article  PubMed  CAS  Google Scholar 

  15. Lnenicka, g. A., Atwood, H. L., and Marin, L. 1986. Morphological transformation of synaptic terminals of a phasic motorneuron by long-term tonic stimulation. J. Neurosci. 6:2252–2258.

    PubMed  CAS  Google Scholar 

  16. Cardone, B., and Roots, B. I., 1990. Comparative immunohistochemical study of glial filament proteins (glial fibrillary acidic protein and vimentin) in goldfish, octopus and snail. Glia, 3:180–192.

    Article  PubMed  CAS  Google Scholar 

  17. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature, 227:680–685.

    Article  PubMed  CAS  Google Scholar 

  18. Roots, B. I. 1993. The evolution of myelin. Pages 187–213,in Malhotra, S. K. (ed.), Advances in Neural Science, Vol. 1, JAI Press, Inc., Greenwich.

    Google Scholar 

  19. Blaurock, A. E. 1986. X-ray and neutron diffraction by membranes: How great is the potential for defining the molecular interactions? Prog. Protein-Lipid Interactions, 2:1–43.

    Google Scholar 

  20. Günther, J. 1976. Impulse conduction in the myelinated giant fibers of the earthworm. Structure and function of the dorsal nodes in the median giant fiber. J. Comp. Neurol. 168:505–532.

    Article  PubMed  Google Scholar 

  21. Hama, K. 1966. The fine structure of the Schwann cell sheath of the nerve fiber in the shrimpPenaeus japonicus. J. Cell Biol. 31:624–632.

    Article  PubMed  CAS  Google Scholar 

  22. Roots, B. I. 1995. The evolution of myelinating cells. Pages 223–248,in Vernadakis, A. and Roots, B. I. (eds.), Neuron-glia Interrelations During Phylogeny, Part I, Phylogeny and Ontogeny of Glial Cells, Humana Press, Totowa.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special issue dedicated to Dr. Marion E. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cardone, B., Roots, B.I. Monoclonal antibodies to proteins of the myelin-like sheath of earthworm giant axons show cross-reactivity to crayfish CNS glia: An immunogold electron microscopy study. Neurochem Res 21, 505–510 (1996). https://doi.org/10.1007/BF02527716

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02527716

Key words

Navigation