Skip to main content
Log in

A finiteness theorem for imaginary abelian number fields

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

Lately, I. Miyada proved that there are only finitely many imaginary abelian number fields with Galois groups of exponents ≤2 with one class in each genus. He also proved that under the assumption of the Riemann hypothesis there are exactly 301 such number fields. Here, we prove the following finiteness theorem: there are only finitely many imaginary abelian number fields with one class in each genus. We note that our proof would make it possible to find an explict upper bound on the discriminants of these number fields which are neither quadratic nor biquadratic bicyclic. However, we do not go into any explicit determination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.H. Hardy and E.M. Wright,An Introduction to the Theory of Numbers, Fifth Edition, Oxford Science Publications, 1979.

  2. S. Lang,Algebraic Number Theory, Addison-Wesley series in Mathematics, 1970.

  3. S. Louboutin,Minoration au point 1des fonctions L et détermination des corps sextiques abéliens totalement imaginaires principaux, Acta Arith.62 (1992), 109–124.

    MATH  MathSciNet  Google Scholar 

  4. S. Louboutin,Lower bounds for relative class numbers, Proc. Amer. Math. Soc.120 (1994), 425–434.

    Article  MATH  MathSciNet  Google Scholar 

  5. S. Louboutin,Determination of all nonquadratic imaginary cyclic number fields of 2-power degrees with ideal class groups of exponent≤2, Math. Comp.64 (1995), 323–340.

    Article  MATH  MathSciNet  Google Scholar 

  6. S. Louboutin,CM-fields with cyclic ideal class groups of 2-power orders, preprint Univ. Caen (1995), submitted.

  7. S. Louboutin,Majorations explicites de |L(1,χ)| (Suite), C. R. Acad. Sci. Paris316 (1993), 11–14.

    MATH  MathSciNet  Google Scholar 

  8. S. Louboutin,Majorations explicites de |L(1, χ)| (Suite), C. R. Acad. Sci. Paris.323 (1996), 443–446.

    MATH  MathSciNet  Google Scholar 

  9. I. Miyada,On imaginary abelian number fields of type (2, 2, … …, 2)with one class in each genus, Manuscripta math.88 (1995), 535–540.

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Ram Murty,An analogue of Artin's conjecture for abelian extensions, J. Nb. Th.18 (1984), 241–248.

    Article  MATH  MathSciNet  Google Scholar 

  11. W. Narkiewicz,Elementary and Analytic Theory of Algebraic Numbers, Second edition, Springer-Verlag, 1990.

  12. J. Pintz,On Siegel's theorem, Acta Arith.24 (1974), 543–551.

    MATH  MathSciNet  Google Scholar 

  13. J. Pintz,Elementary methods in the theory of L-functions, VIII, Real zeros of real L-functions, Acta Arith.33 (1977), 89–98.

    MATH  MathSciNet  Google Scholar 

  14. C.L. Siegel,Über die Classenzahl quadratischer Zahlkörper, Acta Arith.1 (1935), 83–86.

    MATH  Google Scholar 

  15. H.M. Stark,Some effective cases of the Brauer-Siegel theorem, Invent. Math.23 (1974), 135–152.

    Article  MATH  MathSciNet  Google Scholar 

  16. K. Uchida,Class numbers of imaginary abelian number fields. I and II, Tohôku Math. J.23 (1971), 97–104 and 335–348.

    MATH  MathSciNet  Google Scholar 

  17. L.C. Washington,Introduction to Cyclotomic Fields, Grad. Texts Math.83, Springer-Verlag, 1982.

  18. K. Yamamura,The determination of the imaginary abelian number fields with class number one, Math. Comp.206 (1994), 899–921.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stéphane, L. A finiteness theorem for imaginary abelian number fields. Manuscripta Math 91, 343–352 (1996). https://doi.org/10.1007/BF02567959

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02567959

1991 Mathematics Subject Classification

Key words and phrases

Navigation