Skip to main content
Log in

Longitudinal data with nonstationary errors: a nonparametric three-stage approach

  • Published:
Test Aims and scope Submit manuscript

Abstract

We develop here a three-stage nonparametric method to estimate the common, group and individual effects in a longitudinal data setting. Our three-stage additive model assumes that the dependence between performance in an audiologic test and time is a sum of three components. One of them is the same for all individuals, the second one corresponds to the group effect and the last one to the individual effects. We estimate these functional components by nonparametric kernel smoothing techniques. We give theoretical results concerning rates of convergence of our estimates. This method is then applied to the data set that motivated the methods proposed here, the speech recognition data from the Iowa Cochlear Implant Project.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boularan, J., L. Ferré and P. Vicu (1994). Growth curves: a two-stage nonparametric approach.Journal of Statistical Planning and Inference,38, 327–350.

    Article  MATH  MathSciNet  Google Scholar 

  • Boularan, J., L. Ferré and P. Vieu (1995). A nonparametric model for unbalanced longitudinal data with application to geophysical data.Computational Statistics,10, 285–298.

    MATH  MathSciNet  Google Scholar 

  • Caussinus, H. and L. Ferré (1992). Comparing the parameters of a model for several units by mean of principal component analysis.Computational Statistics and Data Analysis,13, 269–280.

    Article  MATH  Google Scholar 

  • Doukhan, P. (1994).Mixing: Properties and Examples. Lecture Notes in Statistics, vol 85. Springer-Verlag, New York.

    MATH  Google Scholar 

  • Diggle, P.J. (1988). An approach to the analysis of repeated measurements.Biometrics,44, 959–971.

    Article  MATH  MathSciNet  Google Scholar 

  • Diggle, P.J., K.Y. Liang and S.L. Zeger (1994).Analysis of Longitudinal Data. Oxford University Press, Oxford.

    Google Scholar 

  • Ferreira, E., V. Núñez-Antón and J. Rodríguez-Póo (1997). Kernel regression estimates of growth curves using nonstationary correlated errors.Statistics & Probability Letters,34, 413–423.

    Article  MATH  MathSciNet  Google Scholar 

  • Fraiman, R. and J. Meloche (1994). Smoothing dependent observations.Statistics & Probability Letters,21, 203–214.

    Article  MATH  MathSciNet  Google Scholar 

  • Gantz, B.J., R.S. Tyler, J.F. Knutson, G.G. Woodworth, P. Abbas, B.F. McCabe, J. Hinrichs, N. Tye-Murray, C. Lansing, F. Kuk and C. Brown (1988). Evaluation of five different cochlear implant designs: audiologic assessment and predictors of performance.Laryngoscope,98, 1100–1106.

    Article  Google Scholar 

  • Gasser, T., H.G. Müller, W. Kölher, L. Molinari and A. Prader (1984). Nonparametric regression analysis of growth curves.Annals of Statistics,12, 1210–219.

    Google Scholar 

  • Grizzle, J.E. and D.M. Allen (1969). Analysis of growth and dose response curves.Biometrics,25, 357–381.

    Article  Google Scholar 

  • Györfi, L., W. Härdle, P. Sardá and P. Vieu (1989).Nonparametric Curve Estimation from Time Series. Lectures Notes in Statistics, vol 70. Springer Verlag, New York.

    MATH  Google Scholar 

  • Härdle, W. (1990).Applied Nonparametric Regression. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Hart, J.D. and T.E. Wehrly (1986). Kernel regression estimation using repeated measurements data.Journal of the American Statistical Association,81, 1080–1088.

    Article  MATH  MathSciNet  Google Scholar 

  • Hart, J.D. and T.E. Wehrly (1993). Consistency of cross-validation when the data are curves.Stochastic Processes and Their Applications,45, 351–361.

    Article  MATH  MathSciNet  Google Scholar 

  • Houllier, F. (1987). Comparaison de courbes et de modéles de croissance: choix d'une distance entre individus.Statistique et Analyse des Donées,12, 17–36.

    Google Scholar 

  • Jones, R.H. (1990). Serial correlation or random subject effects?Communications in Statistics B-Simulation and Computation,19, 1105–1190.

    MATH  Google Scholar 

  • Laird, N.M. and J.H. Ware (1982). Random effects models for longitudinal data.Biometrics,38, 963–974.

    Article  MATH  Google Scholar 

  • Lindstrom, M.J. and D.M. Bates (1990). Nonlinear mixed effects models for repeated measures data.Biometrics,46, 673–687.

    Article  MathSciNet  Google Scholar 

  • Longford, N.T. (1993).Random Coefficient Models. Oxford University Press, Oxford.

    MATH  Google Scholar 

  • Muñoz, A., V. Carcy, J.P. Schouten, M. Segal and B. Rosner (1992). A parametric family of correlation structures for the analysis of longitudinal data.Biometrics,48, 733–742.

    Article  Google Scholar 

  • Núñez-Antón, V. (1993). Analysis of longitudinal data with unequally spaced observations and time dependent correlated errors. Unpublished Ph.D. Dissertation. The University of Iowa, Department of Statistics and Actuarial Science.

  • Núñcz-Antón, V. and G.G. Woodworth (1994). Analysis of longitudinal data with unequally spaced observations and time-dependent correlated errors.Biometrics,50, 445–456.

    Article  Google Scholar 

  • Parzen, E. (1962). On estimation of a probability density and mode.Annals of Mathematical Statistics,35, 1065–1076.

    MathSciNet  Google Scholar 

  • Potthoff, R.R. and S.N. Roy (1964). A generalized multiple analysis of variance model useful especially for growth curve problems.Biometrika,51, 313–326.

    MATH  MathSciNet  Google Scholar 

  • Rao, C.R. (1965). The theory of least squares when the parameters are stochastic and its application to the analysis of growth curves.Biometrika,52, 447–458.

    MATH  MathSciNet  Google Scholar 

  • Rao, C.R. (1967). Least squares theory using an estimated dispersion matrix and its application to measurement of signals.Proceedings of the 5th Berkeley Symposium of the Mathematical Statistical Society,1, 355–372.

    Google Scholar 

  • Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a density.Annals of Mathematical Statistics,27, 642–669.

    Google Scholar 

  • Wehrly, T.E. and J.D. Hart (1988). Bandwidth selection for kernel estimators of growth curves with correlated errors (abstract).Institute of Mathematical Statistics Bulletin,17, 236.

    Google Scholar 

  • Zimmerman, D.L., V. Núñcz-Antón and H. El Barmi (1998). Computational aspects of likelihood-based estimation of first-order antedependence models.Journal of Statistical Computation and Simulation,60, 67–84.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente Núñez-Antón.

Additional information

This work was supported by DGES, Ministerio Español de Educación y Cultura, and Universidad del País Vasco (UPV/EHU) under research grants PB95-0346 and UPV 038.321-HC236/97.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Núñez-Antón, V., Rodríguez-Póo, J.M. & Vieu, P. Longitudinal data with nonstationary errors: a nonparametric three-stage approach. Test 8, 201–231 (1999). https://doi.org/10.1007/BF02595870

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02595870

Key Words

AMS subject classification

Navigation