Skip to main content
Log in

A two-dimensional transient model for convection in laser melted pool

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

A two-dimensional transient model for convective heat transfer and surface tension driven fluid flow is developed. The model describes the transient behavior of the heat transfer process of a stationary band source. Semi-quantitative understanding of scanning is obtained by a coordinate transformation. The non-dimensional forms of the equations are derived and four dimensionless parameters are identified, namely, Peclet number (Pe), Prandtl number (Pr), surface tension number(S), and dimensionless melting temperature(@#@ Tm * @#@). Their governing characteristics and their effects on pool shape, cooling rate, velocity field, and solute redistribution are discussed. A numerical solution is obtained and presented. Quantitative effects of Prandtl number and surface tension number on surface velocity, surface temperature, pool shape, and cooling rate are presented graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C :

constant which defines the interface

d :

width of laser beam

D :

thickness of workpiece

D eff :

effective diffusion coefficient

k :

thermal conductivity

I :

length of laser beam

L :

length of workpiece

n:

normal vector along the interface

p :

pressure

Pe:

Peclet numberu o d/k

Pr:

Prandtl numberv / k

q :

net heat flux from laser

Re:

Reynolds numberu o d/v

r o :

radius of laser beam

S :

surface tension number

T :

temperature

T m :

melting temperature

T* m :

dimensionless melting temperature °K

T∝ :

temperature of metal when it is not heated

u:

velocity vector

u:

x-component of u

u o :

scanning speed of the laser beam

u n :

normal velocity of the interface

v:

y-component of u

w :

z-component of u

W :

width of workpiecex,y,z Cartesian coordinate

p :

density

k :

thermal diffusivity

λ:

latent heat of fusion

v :

kinematic viscosity

μ :

viscosity

σ :

surface tension

l :

liquid

s :

solid

i, j :

indices of node for the discretization of thex,y plane

m :

melting

∝:

ambient

*:

dimensionless quantities

':

derivative with respect to its independent variable

n :

n th time step in the finite difference equation

∇:

del operator i ∂/∂x/+j ∂/∂y

(u ⋅ ∇ ):

convective operator u ∂/∂x/+v∂/∂y

2 :

Laplacian operator ∂2/∂x2+ ∂2/∂y2

References

  1. D.S. Gnanamuthu:Applications of Lasers in Materials Processing, E. A. Metzbower, ed., ASM, Metals Park, OH, 1979, pp. 177–289.

    Google Scholar 

  2. P. M. Moore and L. S. Weinman:Proc. Soc. of Photo-Opt Instrum. Eng., 1979, vol. 198, p. 120.

    Google Scholar 

  3. L. S. Weinman, J. H. Devault, and P. Moore:Applications of Lasers in Materials Processing, E. A. Metzbower, ed., ASM, Metals Park, OH, 1979, pp. 245–59.

    Google Scholar 

  4. C. W. Draper:Proc. Conf. of Lasers in Metallurgy, K. Mukherji and J. Mazumder, eds.,TMS-A1ME, Warrendale, PA, 1981, pp. 67–92.

    Google Scholar 

  5. L. S. Weinman and J.H. Devault:AIP Conference Proc. No. 50, Symp. on Laser Solid Interactions and Laser Processing, Boston, MA, 1978, S. D. Ferris, H. I. Leamy, and J. M. Poate, eds., American Inst. of Physics, New York, NY, p. 239.

    Google Scholar 

  6. T. R. Anthony and H. F. Cline:J. Appl. Phys., 1977, vol. 48, pp. 3888–94.

    Article  CAS  Google Scholar 

  7. T. Chande and J. Mazumder:Appl. Phys. Letter, 1982, vol. 41, p. 42.

    Article  CAS  Google Scholar 

  8. C.R. Heiple and J.R. Roper:Welding Journal, 1982, vol. 61, pp. 973–1025.

    Google Scholar 

  9. C. W. Hirt, B. D. Nichols, and N. C. Romero: “A Numerical Solution Algorithm for Transient Fluid Flows,” Los Alamos Scientific Laboratory, Los Alamos, NM, Report No. UC-34 and UC-79d, April 1975.

    Google Scholar 

  10. C. Chan, J. Mazumder, and M. M. Chen:Applications of Lasers in Materials Processing, E. A. Metzbower, ed., ASM, Metals Park, OH, 1983, p. 150.

    Google Scholar 

  11. P.T. Houldcroft:British Welding J., 1954, vol. 1, p. 468.

    Google Scholar 

  12. W.I. Pumphrey:British Welding J., 1955, vol. 2, p. 93.

    Google Scholar 

  13. R.A. Woods and D. R. Milner:Welding J., 1971, vol. 50, pp. 163s-73s.

    Google Scholar 

  14. C. R. Heiple, J. R. Roper, R. T. Stagner, and R. J. Aden:Welding J., 1983, vol. 62, pp. 72s-77s.

    Google Scholar 

  15. A.L. Shaeffler:Welding J., 1947, vol. 26, pp. 601s-20s.

    Google Scholar 

  16. R.L. Apps and D. R. Milner:British Welding J., 1963, vol. 10, p. 348.

    Google Scholar 

  17. R.L. Apps and D.R. Milner:British Welding J., 1955, vol. 2, p. 475.

    Google Scholar 

  18. N. Christensen, V. de L. Davies, and K. Gjermundsen:British Welding J., 1965, vol. 12, p. 54.

    Google Scholar 

  19. B.J. Bradstreet:Welding J., 1968, vol. 47, pp. 314s-22s.

    CAS  Google Scholar 

  20. G. R. Salter and D. R. Milner:British Welding J., 1960, vol. 7, p. 89.

    CAS  Google Scholar 

  21. G.R. Salter and D.R. Milner:British Welding J., 1965, vol. 12, p. 222.

    CAS  Google Scholar 

  22. D. Howden and D. R. Milner:British Welding J., 1963, vol. 10, p. 395.

    Google Scholar 

  23. F. A. Crossly:Iron Age, 1960, vol. 186, p. 102.

    Google Scholar 

  24. I. P. Trochum and V. P. Chemsysh:Welding Production, 1965, vol. 12, Nov., p. 6.

    Google Scholar 

  25. D. N. Petrakis, M. C. Flemings, and D. R. Poirier:Modeling of Casting and Welding Processes, H. Brody and D. Apelian, eds., published by TMS-AIME, Warrendale, PA, 1981, pp. 285–31.

    Google Scholar 

  26. S. M. Copley, D. Beck, O. Esquivel, and M. Bass:Laser-Solid Interaction and Laser Processing — 1978, S. D. Ferris, H. J. Leamy, and J. M. Poate, eds., Conf. Proc. No. 50, American Institute of Physics, New York, NY, 1979, pp. 161–72.

    Google Scholar 

  27. O. Esquivel, J. Mazumder, M. Bass, and S. M. Copley:Rapid Solidification Processing, Principles and Technologies, II, R. Mehrabian, B.H. Kear, and M. Cohen, eds., Claitor's Publishing Div., Baton Rouge, LA, 1980, pp. 180–88.

    Google Scholar 

  28. S. M. Copley, D. G. Beck, O. Esquivel, and M. Bass:Proc. Conf. of Laser in Metallurgy, Chicago, IL, K. Mukerji and J. Mazumder, eds., TMS-AIME, Warrendale, PA, 1981, pp. 1–20.

    Google Scholar 

  29. T. Chande and J. Mazumder:Metall. Trans. B, 1983, vol. 14B, pp. 181–90.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on a presentation made at the symposium “Fluid Flow at Solid-Liquid Interfaces” held at the fall meeting of the TMS-AIME in Philadelphia, PA on October 5, 1983 under the TMS-AIME Solidification Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, C., Mazumder, J. & Chen, M.M. A two-dimensional transient model for convection in laser melted pool. Metall Trans A 15, 2175–2184 (1984). https://doi.org/10.1007/BF02647100

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647100

Keywords

Navigation