Skip to main content
Log in

A Model for the Graphite Formation in Ductile Cast Iron: Part I. Inoculation Mechanisms

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Part I of this investigation deals with the inoculation mechanisms in ductile cast iron, with particular emphasis on the theoretical aspects of heterogeneous nucleation of graphite at inclusions. It is shown that the majority of the inclusions in ductile cast iron are primary or secondary products of the magnesium treatment(e.g., MgS, CaS, MgOSiO{ni2}, and 2MgO-SiO2). After inoculation with (X,Al)-containing ferrosilicon (X denotes Ca, Sr, or Ba), hexagonal silicate phases of the XO-SiO2 or the XO-Al2O3-2SiO2 type form at the surface of the oxide inclusions, probably through an exchange reaction with MgO. The presence of these phases, will enhance the nucleation potency of the inclusions with respect to graphite. In particular, the (001) basal planes of the crystals are favorable sites for graphite nucleation, since these facets allow for the development of coherent/semicoherent low-energy interfaces between the substrate and the nucleus. In contrast, the fading of inoculation can be explained by a general coarsening of the inclusion population with time, which reduces the total number of catalyst particles for graphite in the melt. A theoretical analysis of the reaction kinetics gives results which are in close agreement with experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.H. Patterson and M.J. Laiich:AFS Trans., 1978, vol. 86, pp. 33–42.

    CAS  Google Scholar 

  2. R. Elliott:Cast Iron Technology, Butterworth's, London, 1988, pp. 79–85.

    Google Scholar 

  3. D.A. Porter and K.E. Easterling:Phase Transformations in Metals and Alloys, Van Nostrand Reinhold, Wokingham, United Kingdom, 1981, pp. 110–262.

    Google Scholar 

  4. Bruce L. Bramfitt:Metall. Trans., 1970, vol. 1, pp. 1987–95.

    Article  CAS  Google Scholar 

  5. L.F. Mondolfo:Mater. Sci. Technol., 1989, vol. 5, pp. 118–22.

    Article  CAS  Google Scholar 

  6. Y. Nuri, T. Ohashi, T. Hiromoto, and O. Kitamura:Trans. Iron Steel Inst. Jpn., 1982, vol. 22, pp. 399–407.

    Article  Google Scholar 

  7. T. Skaland, Ø. Grong, and T. Grong:Metall. Trans. A, 1993, vol. 24A, pp. 2347–53.

    Article  CAS  Google Scholar 

  8. I. Minkoff:The Physical Metallurgy of Cast Iron, John Wiley & Sons Ltd., New York, NY, 1983, pp. 55–63.

    Google Scholar 

  9. D. Turnbull and R. Vonnegut:Ind. Eng. Chem., 1952, vol. 44, pp. 1292–97.

    Article  CAS  Google Scholar 

  10. I.C. Hughes:Proc. Sol. Tech. in the Foundry and Casthouse, Institute of Metals, London, 1980.

    Google Scholar 

  11. J.V. Dawson:BCIRA J., 1961, vol. 9, pp. 199–236.

    CAS  Google Scholar 

  12. H.W. Lownie:Foundry, 1963, vol. 91, pp. 66–68.

    Google Scholar 

  13. J.V. Dawson:Modern Casting, 1966, vol. 49, pp. 171–77.

    CAS  Google Scholar 

  14. N.C. McClure, A.V. Khan, D. McCrady, and H.L. Womochel:AFS Trans., 1957, vol. 65, pp. 340–49.

    Google Scholar 

  15. R.L. Nickelson:Foundry, 1967, vol. 95, pp. 145–49.

    Google Scholar 

  16. C.S. Kanetkar, H.H. Carnell, and D.M. Stefanescu:AFS Trans., 1984, vol. 92, pp. 417–28.

    CAS  Google Scholar 

  17. A. Boyles:The Structure of Cast Iron, ASM, Metals Park, OH, 1947.

    Google Scholar 

  18. J.T. Eash:AFS Trans., 1941, vol. 49, pp. 887–906.

    Google Scholar 

  19. G.A. Feest, G. McHugh, D.O. Morton, L.S. Welch, and I.A. Cook:Proc. Sol. Tech. in the Foundry and Casthouse, The Metals Society, London, 1983, pp. 232–39.

    Google Scholar 

  20. N. Kayama and K. Suzuki:Report Casting Research Lab., Waseda University, Japan, 1979, vol. 30, pp. 61–67.

    Google Scholar 

  21. C.H. Wang and H. Fredriksson:Proc. 48th Int. Foundry Congress, 1981, Varna, Bulgaria.

  22. H. Fredriksson:Mater. Sci. Eng., 1984, vol. 65, pp. 137–44.

    Article  CAS  Google Scholar 

  23. B. Lux:Modern Casting, 1964, vol. 45, pp. 222–32.

    CAS  Google Scholar 

  24. K.M. Muzumdar and J.F. Wallace:AFS Trans., 1972, vol. 80, pp. 317–28.

    CAS  Google Scholar 

  25. M.H. Jacobs, T.J. Law, D.A. Melford, and M.J. Stowell:Met. Technol., 1974, vol. 1, pp. 490–500.

    Article  Google Scholar 

  26. M.A. Gadd and G.H.J. Bennett:Physical Chemistry of Inoculation in Cast Iron, 3rd Int. Symp. on the Physical Metallurgy of Cast Iron, Stockholm, 1984.

  27. G.X. Sun and C.R. Loper, Jr.:AFS Trans., 1983, vol. 91, pp. 639–46.

    CAS  Google Scholar 

  28. R. Naro and J.F. Wallace:AFS Trans., 1970, vol. 78, pp. 229–38.

    Google Scholar 

  29. K. Muzumdar and J.F. Wallace:AFS Trans., 1973, vol. 81, pp. 412–23.

    CAS  Google Scholar 

  30. M.J. Lalich and J.R. Hitchings:AFS Trans., 1976, vol. 84, pp. 653–64.

    CAS  Google Scholar 

  31. A.P. Rosenstiel and H. Bakkerus:Giesserei Tech. Wiss. Beih., 1964, vol. 16, pp. 149–54.

    Google Scholar 

  32. W. Deuchler:Giesserei Tech. Wiss. Beih., 1962, vol. 14, pp. 745–51.

    Google Scholar 

  33. H.B. Zeedijk:J. Iron Steel Inst., 1965, vol. 203, pp. 737–38.

    CAS  Google Scholar 

  34. B. Dhindaw and J.D. Verhoeven:Metall. Trans. A, 1980, vol. 11A, pp. 1049–57.

    Article  CAS  Google Scholar 

  35. J.C. Mercier:Fonderia, 1969, No. 277, pp. 191-97.

  36. M.H. Jacobs, T.J. Law, D.A. Melford, and M.J. Stowell:Met. Technol., 1976, vol. 3, pp. 98–108.

    Article  Google Scholar 

  37. R.J. Warrick:AFS Cast Met. Res. J., 1966, vol. 2 (3), pp. 97–108.

    CAS  Google Scholar 

  38. D.R. Askeland, P.K. Trojan, and R.A. Flinn:AFS Trans., 1970, vol. 78, pp. 125–32.

    Google Scholar 

  39. D.R. Askeland and P.K. Trojan:AFS Trans., 1969, vol. 77, pp. 344–52.

    CAS  Google Scholar 

  40. B. Francis:Metall. Trans. A, 1979, vol. 10A, pp. 21–31.

    Article  CAS  Google Scholar 

  41. R.W. Heine and C.R. Loper, Jr.:AFS Trans., 1966, vol. 74, pp. 274–80.

    Google Scholar 

  42. D.R. Askeland, P.K. Trojan, and R.A. Flinn:AFS Trans., 1972, vol. 80, pp. 349–58.

    CAS  Google Scholar 

  43. R.W. Heine and C.R. Loper, Jr.:AFS Trans., 1966, vol. 74, pp. 421–28.

    Google Scholar 

  44. M.C. Latona, H.W. Kwon, J.F. Wallace, and J.D. Voss:AFS Trans., 1984, vol. 92, pp. 881–906.

    CAS  Google Scholar 

  45. P.K. Trojan, P.J. Guichelaar, W.N. Bargeron, and R.A. Flinn:AFS Trans., 1968, vol. 76, pp. 323–33.

    CAS  Google Scholar 

  46. A. Wittmoser:Giesserei Tech. Wiss. Beih., 1952, No. 6-8, pp. 323-34.

  47. I. Barin:Thermochemical Data of the Pure Substances, VCH Verlagsgesellschaft, Weinheim, Germany, 1989.

    Google Scholar 

  48. R. Kiessling and N. Lange:Non-Metallic Inclusions in Steel, Book No. 194, The Metals Society, London, 1978.

    Google Scholar 

  49. D.L. Sponseller and R.A. Flinn:Trans. TMS-AIME, 1964, No. 230, pp. 876-88.

  50. R.H. Rein and J. Chipman:Trans. TMS-AIME, 1965, vol. 233, pp. 415–25.

    CAS  Google Scholar 

  51. J. Bruch:Rheinstahl Technol., 1965, No. 2, pp. 211-22.

  52. J. Bruch:Rheinstahl Technol., 1965, No. 36, pp. 799-807.

  53. J.R. Wynnyckyj and L.M. Pidgeon:Metall. Trans., 1971, vol. 2, pp. 979–86.

    Article  CAS  Google Scholar 

  54. J.P. Sadocha and J.E. Gruzleski:Proc. 2nd Int. Symp. on the Metallurgy of Cast Iron, Geneva, 1974, pp. 443-56.

  55. R.H. McSwain and C.E. Bates:Proc. 2nd Int. Symp. on the Metallurgy of Cast Iron, Geneva, 1974, pp. 423-40.

  56. I. Minkoff;Proc. Solidification of Metals, ISI, Philadelphia, PA, 1968, vol. PI 10, p. 253–65.

    Google Scholar 

  57. D.D. Double and A. Hellawell:Proc. 2nd Int. Symposium on the Metallurgy of Cast Iron, Geneva, 1974, pp. 509-25.

  58. B. Lux, I. Minkoff, F. Mollard, and E. Thury:Proc. 2nd Int. Symp. on the Metallurgy of Cast Iron, Geneva, 1974, pp. 495-505.

  59. E.E. Underwood:Quantitative Stereology, Addison- Wesley Publishing Co., London, 1970.

    Google Scholar 

  60. R.L. Fullman:Trans. AIME, 1953, vol. 197, pp. 447–52.

    CAS  Google Scholar 

  61. A.G. Franklin:J. Iron Steel Inst., 1969, vol. 207, pp. 181–86.

    CAS  Google Scholar 

  62. J. Harkki and Y. Julin:German-Finnish Symp., Report TKK-V-B 26, Helsinki University of Technology, Helsinki, 1984, pp. 39–51.

    Google Scholar 

  63. P. Ramdohr and H. Strunz:Lehrbuch der Mineralogie, Ferdinand Enke Verlag, Stuttgart, 1978.

    Google Scholar 

  64. E.T. Turkdogan:Chemical Metallurgy of Iron and Steel, The Iron and Steel Institute, London, 1973, pp. 153–70.

    Google Scholar 

  65. C. Wagner: Z.Elektrochemie, 1961, vol. 65, pp. 581–91.

    Google Scholar 

  66. C.C. Wang: Ph.D. Thesis, University of Wisconsin, Madison, WI, 1979, pp. 159-68.

  67. W. Kurz and D.J. Fisher:Fundamentals of Solidification, 3rd ed., Trans Tech Publications, Switzerland, 1989.

    Google Scholar 

  68. S.O. Olsen: Bj0lvefossen/Elkem, Ålvik, Norway, personal communication (1992).

  69. O. Liesenberg, C. Podrzucki, and A. Bielat:Giessereitechnik, 1985, vol. 31, pp. 99–104.

    CAS  Google Scholar 

  70. R. Hummer:Proc. 2nd Int. Symp. on the Metallurgy of Cast Iron, Geneva, 1974, pp. 147-58.

Download references

Author information

Authors and Affiliations

Authors

Additional information

formerly Ph.D. Graduate Student, Division of

formerly Ph.D. Graduate Student, Division of

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skaland, T., Grong, Ø. & Grong, T. A Model for the Graphite Formation in Ductile Cast Iron: Part I. Inoculation Mechanisms. Metall Trans A 24, 2321–2345 (1993). https://doi.org/10.1007/BF02648605

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02648605

Keywords

Navigation