Skip to main content
Log in

A study of void nucleation, growth, and coalescence in spheroidized 1518 steel

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The ductile fracture of a spheroidized 1518 steel has been investigated using three types of tensile specimens — smooth tensile, notched tensile, and plane-strain tensile. It was found that void nucleation has two different modes (Type I and Type II) depending on local conditions, the most important of which are the size, shape, and distribution of the particles. By identifying the low-strain-range nucleation behavior (Type I), it was possible to determine the value of plastic strain, εN, after which void nucleation at average-sized carbide particles (Type II) begins; εN is 0.45 for the smooth tensile case, 0.30 for the notched, and 0.25 for the plane strain. The critical stress for Type II void nucleation, σc, is of the order of 1200 MPa. Void growth depends on the macroscopic stress-strain state: longitudinal growth is given by a linear function of applied plastic strain, εp, whereas lateral growth shows a linear dependence on the triaxial stress, σT. When the local value ofV f reaches a critical volume fraction of voids (V crif = 5 ± 0.5 pct), void coalescence occurs in a catastrophic manner, leading to final separation within a highly localized zone. The stress concentration caused by the notched tensile specimen geometry and the localized mode of plastic flow caused by the constraint of the plane-strain state in a Clausing-type specimen were found to affect the substeps of void nucleation, growth, and coalescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.S. Argon, J. Im, and R. Safoglu:Metall. Trans. A, 1975, vol. 6A, pp. 825–37.

    CAS  Google Scholar 

  2. S.H. Goods and L.M. Brown:Acta Metall., 1979, vol. 27, pp. 1–15.

    Article  CAS  Google Scholar 

  3. A.W. Thompson:Metall. Trans. A, 1987, vol. 18A, pp. 1877–86.

    CAS  Google Scholar 

  4. C.C. Chu and A. Needleman:J. Eng. Mater. Technol., 1980, vol. 102, pp. 249–56.

    Article  Google Scholar 

  5. M. Saje, J. Pan, and A. Needleman:Int. J. Fract., 1982, vol. 19, pp. 163–81.

    Article  Google Scholar 

  6. F.A. McClintock:J. Appl. Mech., 1968, vol. 35, pp. 363–71.

    Google Scholar 

  7. J.R. Rice and D.M. Tracey:J. Mech. Phys. Solids, 1969, vol. 17, pp. 201–17.

    Article  Google Scholar 

  8. D.M. Tracey:J. Mech. Phys. Solids, 1971, vol. 3, pp. 301–15.

    Google Scholar 

  9. A. Needleman and J.R. Rice:Mechanics of Sheet Metal Forming, D.P. Koistinen and N.M. Wang, eds., Plenum Press, New York, NY, 1978, pp. 237–67.

    Google Scholar 

  10. P.F. Thomason:Acta Metall., 1982, vol. 30, pp. 279–84.

    Article  CAS  Google Scholar 

  11. R.J. Bourcier, D.A. Koss, R.E. Smelser, and O. Richmond:Acta Metall., 1986, vol. 34, pp. 2443–53.

    Article  CAS  Google Scholar 

  12. E. Ryan, S. Purushothaman, and J.K. Tien:Mater. Sci. Eng., 1982, vol. 52, pp. 271–75.

    Article  CAS  Google Scholar 

  13. J.W. Hancock and D.K. Brown:J. Mech. Phys. Solids, 1983, vol. 31, pp. 1–24.

    Article  Google Scholar 

  14. D.P. Clausing:Int. J. Fract. Mech., 1970, vol. 6, pp. 71–85.

    Google Scholar 

  15. P.W. Bridgman:Trans. ASM, 1944, vol. 32, pp. 553–74.

    Google Scholar 

  16. E.R. Weibel:Stereological Methods, Academic Press, New York, NY, 1979, vol. 1.

    Google Scholar 

  17. J.H. Hollomon:Trans. AIME, 1945, vol. 162, pp. 268–90.

    Google Scholar 

  18. C.T. Liu and J. Gurland:Trans. TMS-AIME, 1968, vol. 242, pp. 1535–42.

    CAS  Google Scholar 

  19. W.B. Morrison:Trans. ASM, 1966, vol. 59, pp. 824–46.

    CAS  Google Scholar 

  20. Y.W. Chang and R.J. Asaro:Met. Sci., 1978, vol. 12, pp. 277–84.

    Article  CAS  Google Scholar 

  21. L. Anand and J. Gurland:Acta Metall., 1976, vol. 24, pp. 901–09.

    Article  CAS  Google Scholar 

  22. R. Garber, I.M. Bernstein, and A.W. Thompson:Metall. Trans. A, 1981, vol. 12A, pp. 225–34.

    Google Scholar 

  23. A.S. Argon and J. Im:Metall. Trans. A, 1975, vol. 6A, pp. 839–51.

    CAS  Google Scholar 

  24. H. Cialone and R.J. Asaro:Metall. Trans. A, 1981, vol. 12A, pp. 1373–87.

    Google Scholar 

  25. J.R. Fisher and J. Gurland:Met. Sci., 1981, vol. 15, pp. 185–92.

    Article  CAS  Google Scholar 

  26. C.T. Liu and J. Gurland:Trans. ASM, 1968, vol. 61, pp. 156–67.

    CAS  Google Scholar 

  27. J. Gurland:Acta Metall., 1972, vol. 20, pp. 735–41.

    Article  CAS  Google Scholar 

  28. I.G. Palmer and G.C. Smith:AIME Conf. Oxide Dispersion Strengthening, G.E. Ansell, ed., Gordon and Breach, New York, NY, 1968, pp. 253–90.

    Google Scholar 

  29. T.B. Cox and J.R. Low, Jr.:Metall. Trans., 1974, vol. 5, pp. 1457–70.

    Article  CAS  Google Scholar 

  30. T.C. Lindley, G. Oates, and C.E. Richards:Acta Metall., 1970, vol. 18, pp. 1127–36.

    Article  CAS  Google Scholar 

  31. T. Goldenberg, T.D. Lee, and J.P. Hirth:Metall. Trans. A, 1978, vol. 9A, pp. 1663–71.

    CAS  Google Scholar 

  32. B.I. Edelson:Trans. ASM, 1963, vol. 56, pp. 82–89.

    Google Scholar 

  33. S.S. Rhee and F.A. McClintock:Proc. 4th U.S. Nat. Cong. Appl. Mech., ASME, New York, NY, 1962, vol. 2, pp. 1007–13.

    Google Scholar 

  34. J.C. Earl and D.K. Brown:Eng. Fract. Mech., 1976, vol. 8, pp. 599–611.

    Article  Google Scholar 

  35. D.P. Clausing:J. Mater., 1969, vol. 4, pp. 566–82.

    Google Scholar 

  36. D. Kwon:Scripta Metall., 1988, vol. 22, pp. 1161–64.

    Article  CAS  Google Scholar 

  37. I.E. French and P.F. Weinrich:Scripta Metall., 1974, vol. 8, pp. 87–90.

    Article  CAS  Google Scholar 

  38. A. Brownrigg, W.A. Spitzig, O. Richmond, D. Teirlinck, and J.D. Embury:Acta Metall., 1983, vol. 31, pp. 1141–50.

    Article  CAS  Google Scholar 

  39. Kenichiro Yoshino and C.J. McMahon, Jr.:Metall. Trans., 1974, vol. 5, pp. 363–70.

    CAS  Google Scholar 

  40. D. Kwon: Ph.D. Thesis, Brown University, Providence, RI, 1987.

    Google Scholar 

  41. M. Perra and I. Finnie:Fracture 1977, D.M.R. Taplin, ed., Pergamon Press, Oxford, 1977, vol. 2, pp. 415–23.

    Google Scholar 

  42. F.A. McClintock, S.M. Kaplan, and C.A. Berg:Int. J. Fract. Mech., 1966, vol. 2, pp. 614–27.

    Google Scholar 

  43. J.I. Bluhm and R.J. Morrissey:Proc. 1st Int. Cong. Fracture, Japanese Soc. for Strength and Fracture of Materials, Sendai, Japan, 1965, vol. 3, pp. 1739–80.

    Google Scholar 

  44. R.D. Thomson and J.W. Hancock:Int. J. Fract., 1984, vol. 26, pp. 99–112.

    Article  Google Scholar 

  45. P.F. Thomason:J. Inst. Met., 1968, vol. 96, pp. 360–65.

    Google Scholar 

  46. L.M. Brown and J.D Embury:Proc. 3rd Int. Conf. Strengths of Metals and Alloys, Inst. of Metals, London, England, 1973, vol. 1, pp. 164–69.

    Google Scholar 

  47. A.L. Gurson:J. Eng. Mater. Technol., 1975, vol. 99, pp. 2–15.

    Google Scholar 

  48. P.F. Thomason:Acta Metall., 1981, vol. 29, pp. 763–77.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Research Assistant, Division of Engineering, Brown University.

Formerly Professor, Division of Engineering, Brown University, Providence, RI.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwon, D., Asaro, R.J. A study of void nucleation, growth, and coalescence in spheroidized 1518 steel. Metall Trans A 21, 117–134 (1990). https://doi.org/10.1007/BF02656430

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02656430

Keywords

Navigation