Skip to main content
Log in

A fan delta succession rich in water escape structures (Upper Turonian, Brandenberg, Austria): Possible record of paleoseismicity

  • Published:
Facies Aims and scope Submit manuscript

Summary

The Upper Turonian of Brandenberg (Austria) is based by a transgressive fan delta succession rich in water escape structures that, at least in part, may have formed in association with earthquakes. The investigated fan delta is among the oldest deposits of the Lower Gosau Subgroup (Upper Turonian to Lower Campanian), a terrestrial to neritic succession that unconformably overlies older carbonate rocks. In its subaerial part, the fan succession consists mainly of conglomerates deposited from mass flows, interlayered with red claystones to siltstones. Along the fringe of marine transgression, beachface/channel mouth conglomerates and bioturbated siltstones to fine sandstones accumulated.

The marine part of the fan delta succession consists mainly of cross-laminated and hummocky cross-laminated arenites deposited in a wave/storm-domainated shoreface. Excellent preservation of sedimentary lamination throughout and near absence of bioturbation indicate (intermittently) rapid sediment accumulation. Intercalated shoreface conglomerates are present as compound channel-fills, and as thin sheets alongside and off channels. Offshore transport of gravels to cobbles into the shoreface may have been driven by river floods (in the most proximal positions) and by storm rip currents (farther seaward). Towards the top of the succession, conglomerate sheets disappear, and the arenites become bioturbated.

In the succession of shore zone arenites, abundant water escape structures include distorted/convoluted lamination, short fluidization planes, tabular fissures (some associated with offset of beds), pods and lenses of internal breccias, pillow beds up to more than 1 m thick, and hitherto undescribed, cyclindrical structures (“onion structures”) built by concentrically arranged planes interpreted as water escape routes. The tabular fissures, internal breccias and the pillow beds are closely similar to water escape structures documented from historical earthquakes and from inferred paleo-earthquakes. Storm wave loading or wave-induced microseisms are considered less probable triggers of the larger dewatering structures. Water escape structures represent an hitherto unappreciated, although not strictly diagnostic, indicator of syndepositional tectonism in the Upper Cretaceous of the Eastern Alps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, C.R. (1975): Geological criteria for evaluating seismicity.—Geol. Soc. Am. Bull.,86, 1041–1057, Boulder

    Article  Google Scholar 

  • Bourgeois, J. & Leithold, E.L. (1984): Wave-worked conglomerates—depositional processes and criteria for recognition.—In: Koster, E. H. & Steel, R. J. (eds.): Sedimentology of Gravels and Conglomerates.—Can. Soc. Petrol. Geol. Mem.,10, 331–343, Calgary

  • Channell, J.E.T., Brandner, R., Spieler, A. & Smathers, N.P. (1990): Mesozoic paleogeography of the Northern Calcareous Alps-Evidence from paleomagnetism and facies analysis.—Geology,18, 828–831, Boulder

    Article  Google Scholar 

  • Chough, S.K. & Chun, S.S. (1988): Intrastratal rip-down clasts, Late Cretaceous Uhangri Formation, southwest Korea.—J. Sed. Pet.,58, 530–533, Tulsa

    Google Scholar 

  • Clifton, H.E. (1969): Beach lamination: Nature and origin.—Mar. Geol.,7, 553–559, Amsterdam (Elsevier)

    Google Scholar 

  • Clifton, H.E., Hunter, R.E. & Phillips, R.L. (1971): Depositional structures and processes in the non-barred high-energy nearshore.—J. Sed. Pet.,41, 651–670, Tulsa

    Google Scholar 

  • Dalrymple, R.W. (1979): Wave-induced liquefaction: a modern example from the Bay of Fundy.—Sedimentology,26, 835–844, Oxford

    Article  Google Scholar 

  • Dietrich, V.J. & Franz, U. (1976): Ophiolith-Detritus in den santonen Gosau-Schichten (Nördliche Kalkalpen).—Geotekt. Forsch.,50, 85–109, Stuttgart (Schweizerbart)

    Google Scholar 

  • Dionne, J.-C. (1973): Structures cylindriques verticales dans du Quaternaire a Athabaska, Quebec.—Sedim. Geol.,9, 53–63, Amsterdam (Elsevier)

    Google Scholar 

  • Dott, Jr., R.H. & Bourgeois, J. (1982): Hummocky stratification: significance of its variable bedding sequences.—Geol. Soc. Am. Bull.,93, 663–680, Boulder

    Article  Google Scholar 

  • Enzel, Y., Kadan, G., Eyal, Y., 2000, Holocene earthquakes inferred from a fan-delta sequence in the Dead Sea Graben. —Quaternary Res.,53, 34–48, Washington

    Article  Google Scholar 

  • Ethridge, F.G. & Wescott, W.A. (1984): Tectonic setting, recognition, and hydrocarbon reservoir potential of fan-delta deposits. —In: Koster, E.H. & Steel, R.J. (eds.): Sedimentology of Gravels and Conglomerates.—Can. Soc. Petrol. Geol. Mem.,10, 217–235, Calgary

  • Fenninger, A. (1998): Konglomeratorgeln aus der oberkarbonen Auernig-Gruppe der Karnischen Alpen (Nassfeld, Österreich). —Mitt. österr. geol. Ges.,91, 53–61, Wien

    Google Scholar 

  • Froitzheim, N., Schmid, S. & Conti, P. (1994): Repeated change from crustal shortening to orogen-parallel extension in the Austroalpine units of Graubünden.—Eclogae geol. Helv.,87, 559–612, Basel (Birkhäuser)

    Google Scholar 

  • Froitzheim, N., Conti, P. & van Daalen, M. (1997): Late Cretaceous, synorogenic, low-angle normal faulting along the Schlinig fault (Switzerland, Italy, Austria) and its significance for the tectonics of the Eastern Alps.—Tectonophysics,280, 267–293, Amsterdam (Elsevier)

    Google Scholar 

  • Gradstein, F.M., Agterberg, F.P., Ogg, J.G., Hardenbol, J., Van Veen, P., Thierry, J. & Huang, Z. (1994): A Mesozoic time scale.—J. Geophys. Res.,99, B12, 24.051–24.074, Washington (American Geophysical Union)

    Google Scholar 

  • Greenwood, B. & Mittler, P.R. (1985): Vertical sequence and lateral transitions in the facies of a barred nearshore environment. —J. Sed. Pet.,55, 366–375, Tulsa

    Google Scholar 

  • Guhman, A.I. & Pederson, D.T. (1992): Boiling sand springs, Dismal River, Nebraska: Agents of formation of vertical cyclindrical structures and geomorphic change.—Geology,20, 8–10, Boulder

    Article  Google Scholar 

  • Hawley, J.E., & Hart, R.C. (1934): Cylindrical structures in sand-stones. —Geol. Soc. Am. Bull.,45, 1017–1034, Boulder

    Google Scholar 

  • Herm, D., Kauffman, E. & Wiedmann, J. (1979): The age and depositional environment of the “Gosau”-Group (Coniacian-Santonian), Brandenberg/Tirol, Austria.—Mitt. Bayer. Staatssammlg. Paläont. hist. Geol.,19, 27–92, München

    Google Scholar 

  • Heward, A.P. (1978): Alluvial fan sequence and megasequence models: with examples from Westphalian D-Stephanian B coalfields, Northern Spain.—In: Miall, A.D. (ed.): Fluvial Sedimentology.—Can. Soc. Petrol. Geol. Mem.,5, 669–702, Calgary

  • King, C.A.M. (1975), Introduction to physical and biological ocean-ography. —372 pp, London (Edward Arnold)

    Google Scholar 

  • Labaume, P. (1987): Syn-diagenetic deformation of a turbiditic succession related to submarine gravity nappe emplacement, Autapie Nappe, French Alps.—In: Jones, M.E. & Preston, R. M. F. (eds.): Deformation of Sediments and Sedimentary Rocks.—Geol. Soc. Spec. Publ.,66, 137–163, London

  • Leckie, D.A. & Walker, R.G. (1982): Storm- and tide-dominated shorelines in Cretaceous Moosebar-Lower Gates interval—outcrop equivalents of deep basin gas trap in western Canada. —Bull. Amer. Assoc. Petrol. Geol.,66, 138–157, Tulsa

    Google Scholar 

  • Leithold, E.L. & Bourgeois, J. (1984): Characteristics of coarse-grained sequences deposited in nearshore, wave-dominated environments—examples from the Miocene of south-west Oregon.—Sedimentology,31, 749–775, Oxford

    Article  Google Scholar 

  • Longuet-Higgins, M.S. & Ursell, F. (1948): Sea waves and microseisms. —Nature,162, 700, London.

    Google Scholar 

  • Lowe, D.R. (1975): Water escape structures in coarse-grained sediments.—Sedimentology,22, 157–204, Oxford

    Article  Google Scholar 

  • — (1982): Sediment gravity flows: II. Depositional models with special reference to the deposits of high-density turbidity currents.—J. Sed. Pet.,52, 279–297, Tulsa

    Google Scholar 

  • Mauritsch, H.J. & Becke, M. (1987): Paleomagnetic investigations in the Eastern Alps and the southern border zone.—In: Flügel, H. & Faupl, P. (eds.): Geodynamics of the Eastern Alps, 282–308, Vienna (Deuticke)

    Google Scholar 

  • McCalpin, J.P. (1996): Paleoseismology in extensional tectonic environments.—In: McCalpin, J. (ed.): Paleoseismology, 85–146, New York (Academic Press)

    Google Scholar 

  • Molina, J.M., Alfaro, P., Moretti, M. & Soria, J.M. (1998): Soft-sediment deformation structures induced by cyclic stress of storm waves in tempestites (Miocene, Guadalquivir Basin, Spain).—Terra Nova,10, 145–150, Oxford (Blackwell)

    Google Scholar 

  • Nemec, W. & Steel, R.J. (1984): Alluvial and costal conglomerates: their significant features and some comments on gravelly mass-flow deposits.—In: Koster, E.H. & Steel, R. (eds.): Sedimentology of Gravels and Conglomerates.—Can. Soc. Petrol. Geol. Mem.,10, 1–31, Calgary

  • Nemec, W. & Steel, R.J. (1988): What is a fan delta and how do we recognize it?—In: Nemec, W. & Steel, R. (eds.): Fan Deltas: Sedimentology and Tectonic Settings, 3–13, New York (Blackie)

    Google Scholar 

  • Obermeier, S.F. (1996): Using liquefaction-induced features for paleoseismic analysis.—In: McCalpin, J. P. (ed.): Paleoseismology, 331–396, New York, Academic Press)

    Google Scholar 

  • Ortner, H. & Reiter, F. (1997): Cretaceous large-scale normal faulting at the southern margin of the Northern Calcareous Alps—The Triassic south of the Inn Valley, Eastern Alps.—Quad. Geodinamica Alpina e Quaternaria,4, 89–91, Milano

    Google Scholar 

  • Ortner, H. & Reiter, F. (1999): Kinematic history of the Triassic south of the Inn valley (Northern Calcareous Alps, Austria)—Evidence Evidence for Jurassic and Late Cretaceous large scale normal —Mem. Sci. Geol.,51, 129–140, Padova

    Google Scholar 

  • Parrish, J.T. & Curtis, R.L. (1982): Atmospheric circulation, upwellie and organic-rich rocks in the Mesozoic and Cenozoic era.—Palaeogeogr., Palaeoclimatol., Palaeoecol.,40, 31–66, Amsterdam (Elsevier)

    Google Scholar 

  • Pettijohn, F.J. & Potter, P.E. (1964): Atlas and glossary of primary sedimentary structures.—370 pp., Berlin (Springer)

    Google Scholar 

  • Philip, J., Babinot, J.F., Tronchetti, G., Fourcade, E., Azema, J., Guiraud, R., Bellion, Y., Ricou, L.E., Vrielynck, B., Boulin, J., Cornee, J.J. & Herbin, J.P. (1993): Late Cenomanian paleoenvironments (94-92 Ma).—In: Dercourt, J., Ricou, L. E. & Vrielynck, B. (eds.). Atlas Tethys: Paleoenvironmental maps, Paris (Gauthier-Villars)

    Google Scholar 

  • Platt, J.P. (1986): Dynamics of orogenic wedges and the uplift of high-pressure metamorphic rocks.—Geol. Soc. Am. Bull.,97, 1037–1053, Boulder

    Article  Google Scholar 

  • Pons, J.M. & Sanders, D. (1999): Composition and paleobiogeographic significance of the Late Cretaceous rudist fauna of the Eastern Alps.—Erlanger geol. Abh., Sdb.3, 54–55, Erlangen

    Google Scholar 

  • Price, G.D., Sellwood, B.W. & Valdes, P.J. (1995): Sedimentological evaluation of general circulation model simulations for the “greenhouse” Earth: Cretaceous and Jurassic case studies. —Sedim. Geol.,100, 159–180, Amsterdam (Elsevier)

    Google Scholar 

  • Prior, D.B. & Bornhold, B.D. (1988): Submarine morphology and process of fjord fan deltas and related high-gradient streams: modern examples from British Columbia.—In: Nemec, W. & Steel, R. (eds.): Fan Deltas: Sedimentology and Tectonic Settings, 135–143, New York (Blackie and Son Ltd.)

    Google Scholar 

  • Rascoe, B., Jr. (1975): Tectonic origin of preconsolidation deformation in Upper Pennsylvanian rock near Bartlesville, Oklahoma. —Bull. Amer. Ass. Petrol. Geol.,59, 1626–1638, Tulsa

    Google Scholar 

  • Ratschbacher, L., Frisch, W., Neubauer, F., Schmid, S. M. & Neugebauer, J. (1989): Extension in compressional orogenic belts: The Eastern Alps.—Geology,17, 404–407, Boulder

    Article  Google Scholar 

  • Ricci Lucchi, F. (1995): Sedimentographica. A photographic atlas of sedimentary structures.—255 pp. 178 pls., 13 figs., New York (Columbia University Press)

    Google Scholar 

  • Roep, T.B. & Everts, A.J. (1992): Pillow-beds: a new type of seismites? An example from an Oligocene turbidite fan complex, Alicante, Spain.—Sedimentology,39, 711–724, Oxford

    Article  Google Scholar 

  • Rossetti, D.F. (1999): Soft-sediment deformation structures in late Albian to Cenomanian deposits, Sao Luís Basin, northern Brazil: evidence for paleoseismicity.—Sedimentology,46, 1065–1081, Oxford.

    Article  Google Scholar 

  • Sanders, D. (1996): Cyclic paralic successions in the Lower Gosau Subgroup (Upper Cretaceous), Brandenberg, Austria.— Zentralbl. f. Geol. Paläont., Teil I,5/6, 585–595, Stuttgart (Schweizerbart'sche Verlanbgsbuchhandlung)

    Google Scholar 

  • — (1997): Upper Cretaceous transgressive shore zone successions (“Untersberger Marmor” Auct.) in the eastern part of the Tyrol (Austria): an overview.—Geol. Paläont. Mitt. Innsbruck,22, 101–121, Innsbruck

    Google Scholar 

  • — (1998): Tectonically controlled Late Cretaceous terrestrial to neritic deposition, Gosau Group, Northern Calcareous Alps (Tyrol, Austria). Facies,39, 139–178, Erlangen

    Article  Google Scholar 

  • Sanders, D., Kollmann, H. & Wagreich, M. (1997): Sequence development and biotic assemblages on an active continental margin: The Turonian-Campanian of the Northern Calcareous Alps.—Bull. Soc. géol. France,168, 351–372, Paris

    Google Scholar 

  • Sohn, Y.K. (1997): On traction-carpet sedimentation.—J. Sed. Res.,67, 502–509, Tulsa

    Google Scholar 

  • Sohn, Y.K., Kim, S.B., Hwang, I.G., Bahk, J.J., Choe, M.Y. & Chough, S.K. (1997): Characteristics and depositional processes of large-scale gravelly Gilbert-Type foresets in the Miocene Doumsan fan delta, Pohang Basin, SE Korea.—J. Sed. Res.,67, 130–141, Tulsa

    Google Scholar 

  • Summesberger, H. & Kennedy, W.J. (1996): Turonian ammonites from the Gosau Group (Upper Cretaceous; Northern Calcareous Alps, Austria), with a revision ofBarroisicerashaberfellneri (Hauer, 1866).—Beitr. Paläont.,21, 105–177, Wien

    Google Scholar 

  • Thorson, R. M., Clayton, W. S. & Seeber, L. (1986): Geologic evidence for a large prehistoric earthquake in eastern Connecticut. —Geology,14, 463–467, Boulder

    Article  Google Scholar 

  • Vittori, E., Sylos Labini, S. & Serva, L. (1991): Paleoseismology: review of the state-of-the-art.—Tectonophysics,193, 9–32, Amsterdam (Elsevier)

    Google Scholar 

  • Wagreich, M. (1988): Sedimentologie und Beckenentwicklung des tieferen Abschnittes (Santon-Untercampan) der Gosauschichtgruppe von Gosau und Russbach (Oberösterreich-Salzburg). —Jb. Geol. B.-A.,131, 663–685, Wien

    Google Scholar 

  • — (1989): Coarsening-upward fan-delta sequences in the Lower Streiteck Formation (Santonian) of the Gosau Group near Gosau (Upper Austria).—N. Jb. Geol. Paläont. Mh., Abt. B.,1, 47–64, Stuttgart (Schweizerbart)

    Google Scholar 

  • — (1991): Subsidenzanalyse an kalkalpinen Oberkreideserien der Gosaugruppe (Österreich). Zentralbl. f. Geol. Paläont.,I, 1645–1657, Stuttgart (Schweizerbart)

    Google Scholar 

  • Wagreich, M. & Faupl, P. (1994): Palaeogeography and geodynamic evolution of the Gosau Group of the Northern Calcareous Alps (Late Cretaceous, Eastern Alps, Austria).—Palaeogeogr., Palaeoclimatol., Palaeoecol.110, 235–254, Amsterdam (Elsevier)

    Article  Google Scholar 

  • Ward, W.C. & Halley, R.B. (1985). Dolomitization in a mixing zone of near-seawater composition, Late Pleistocene, Northeastern Yucatan Peninsula.—J. Sed. Pet.,55, 407–420, Tulsa

    Google Scholar 

  • Wesnousky, S.G. & Leffler, L.M. (1994): A search for paleoliquefaction and evidence bearing on the recurrence behavior of the great 1811–12 New Madrid earthquakes.—U. S. Geol. Survey Prof. Paper,1538 H, 1–42, Washington

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanders, D. A fan delta succession rich in water escape structures (Upper Turonian, Brandenberg, Austria): Possible record of paleoseismicity. Facies 44, 163–182 (2001). https://doi.org/10.1007/BF02668173

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02668173

Keywords

Navigation