Skip to main content
Log in

The restoration of the functions of serially passaged calf hepatocytes by spheroid formation

  • Growth, Differentiation and Senescence
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

A serial cultivation system of hepatocytes was established for the first time using calf liver as a cell source and, repeating passage of more than 30 cumulative population doublings (PDs), was obtained in the presence of long-acting ascorbic acid derivative (L-ascorbic acid 2-phosphate) and epidermal growth factor. The complete purification of hepatocytes was achieved by repeating ethylenediaminetetraacetic acid (EDTA) treatment, by which hepatocytes were easily detached from the culture dish, leaving most of the nonparenchymal cells on the dish. As the population cumulatively doubled, the cell density and albumin-synthesizing ability decreased gradually, and doubling time has exceeded 120 h at about 30 cumulative PDs. In serially passaged cells, the hepatocyte-specific histochemical and biochemical markers—including glucose-6-phosphatase, ornithine carbamoyltransferase, glutamate hydrogenase, and ammonia-metabolizing activities—have been lost after 20 cumulative PDs. However, when these passaged cells were allowed to form spheroids, the morphologic and biochemical characteristics of hepatocytes have rapidly been restored to levels comparable to those in younger generations. Because no extrinsic factor was needed for this restoration, three-dimensional cell-cell interaction would be indispensable for the differentiation of the hepatocytes. The routine serial cultivation of hepatocytes and their redifferentiation by spheroid formation will be useful for studying metabolism, gene regulation, and transplantation of hepatocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alpini, G.; Lenzi, R.; Zhai, W. R., et al. Isolation of a nonparenchymal liver cell fraction enriched in cells with biliary epithelial phenotypes. Gastroenterology 97:1248–1260;1989.

    PubMed  CAS  Google Scholar 

  2. Berry, M. N.; Halls, H. J.; Grivell, M. B. Techniques for pharmacological and toxicological studies with isolated hepatocyte suspensions. Life Sci. 51:1–16;1992.

    Article  PubMed  CAS  Google Scholar 

  3. Braun, L.; Mead, J. E.; Panzica, M., et al. Transforming growth mechanism of growth regulation. Proc. Natl. Acad. Sci. USA 85:1539–1543;1988.

    Article  PubMed  CAS  Google Scholar 

  4. Fausto, N.; Mead, J. E. Regulation of liver growth: protooncogenes and transforming growth factors. Lab. Invest. 60:4–13;1989.

    PubMed  CAS  Google Scholar 

  5. Folkman, J.; Haudenschild, C. C.; Zetter, B. R. Long-term culture of capillary endothelial cells. Proc. Natl. Acad. Sci. USA 76:5217–5221;1979.

    Article  PubMed  CAS  Google Scholar 

  6. Gonchoroff, N. J.; Greipp, P. R.; Kyle, R. A., et al. Monoclonal antibody reactive with 5-bromo-2′-deoxyuridine that does not require DNA denaturation. Cytometry 6:506–512;1985.

    Article  PubMed  CAS  Google Scholar 

  7. Gospodarowicz, D.; III, C. R. Do plasma and serum have different abilities to promote cell growth? Proc. Natl. Acad. Sci. USA 77:2726–2730;1989.

    Article  Google Scholar 

  8. Grisham, J. W. Cell types in long-germ propagable cultures of rat liver. Ann. NY Acad. Sci. 349:128–137;1989.

    Article  Google Scholar 

  9. Hata, R.; Ninomiya, Y.; Sano, J., et al. Activation of collagen synthesis in primary culture of rat liver parenchymal cells (hepatocytes). J. Cell. Physiol. 122:333–342;1985.

    Article  PubMed  CAS  Google Scholar 

  10. Hata, R.; Senoo, H. L-ascorbic acid 2-phosphate stimulates collagen accumulation, cell proliferation, and formation of three-dimensional tissuelike substance by skin fibroblasts. Methods Cell Biol. 138:8–16;1989.

    CAS  Google Scholar 

  11. Hernandez, J.; Zarnegar, R.; Michalopoulos, G. K. Characterization of the effects of human placental HGF on rat hepatocytes. J. Cell. Physiol. 150:116–121;1992.

    Article  PubMed  CAS  Google Scholar 

  12. Hoffman, B.; Piasecki, A.; Paul, D. Proliferation of fetal rat hepatocytes in response to growth factors and hormones in primary culture. J. Cell. Physiol. 139:654–662;1989.

    Article  Google Scholar 

  13. Hoshi, H.; Kan, M.; McKeehan, W. Direct analysis of growth factor requirements for isolated human fetal hepatocytes. In Vitro Cell. Dev. Biol. 23:723–732; 1987.

    Article  PubMed  CAS  Google Scholar 

  14. Houck, K. A.; Zaneger, R.; Muga, S. J. Acidic fibroblast growth factor (HBGF-1) stimulates DNA synthesis in primary rat hepatocyte cultures. J. Cell. Physiol. 143:129–132; 1990.

    Article  PubMed  CAS  Google Scholar 

  15. Koide, N.; Sakaguchi, K.; Koide, Y., et al. Formation of multicellular spheroids composed of adult rat hepatocytes in dishes with positively charged surfaces and under other nonadherent environments. Exp. Cell Res. 186:227–235; 1990.

    Article  PubMed  CAS  Google Scholar 

  16. Landry, J. D.; Bernier, C.; Ouellet, R., et al. spheroidal aggregate culture of rat liver cells: histotypic reorganization, biomatrix deposition, and maintenance of functional activities. J. Cell Biol. 101:914–923; 1985.

    Article  PubMed  CAS  Google Scholar 

  17. Li, A. P.; Colburn, S. M.; Beck, D. J. A simplified method for the culturing of primary adult rat and human hepatocytes as multicellular spheroids. In Vitro Cell. Dev. Biol. 28:673–677; 1992.

    Article  Google Scholar 

  18. Lyons, B. L.; Schwarz, R. I. Ascorbate stimulation of PAT cells causes an increase in transcription rates and decrease in degradation rates of procollagen mRNA. Nucleic Acids Res. 12:2569–2579; 1984.

    Article  PubMed  CAS  Google Scholar 

  19. Michalopoulos, G.; Cianciulli, H. D.; Novotny, A. R., et al. Liver regeneration studies with rat hepatocytes in primary culture. Cancer Res. 42:4673–4682; 1982.

    PubMed  CAS  Google Scholar 

  20. Mizutani, A. Cytochemical demonstration of ornithine carbamoyltransferase activity in liver mitochondria of rat and mouse. J. Histochem. Cytochem. 16:172–180; 1968.

    PubMed  CAS  Google Scholar 

  21. Nakamura, T.; Nishizawa, T.; Hagiya, M., et al. Molecular cloning and expression of human hepatocyte growth factor. Nature 342:440–443; 1989.

    Article  PubMed  CAS  Google Scholar 

  22. Nomura, H.; Ishiguro, T.; Morimoto, S. Studies on L-ascorbic acid derivatives. III. Bis (L-ascorbic acid-3, 3′) phosphate and L-ascorbic acid 2-phosphate. Chem. & Pharm. Bull. (Tokyo) 17:387–393; 1969.

    CAS  Google Scholar 

  23. Oberhammer, F. A.; Pavelka, M.; Sharma, S., et al. Induction of apoptosis in cultured hepatocytes and in regressing liver by transforming growth factor β-1. Proc. Natl. Acad. Sci. USA 89:5408–5412; 1992.

    Article  PubMed  CAS  Google Scholar 

  24. Okuda, H.; Fujii, S.; Kawashima, Y. A direct colorimetric determination of blood ammonia. Tokushima J. Exp. Med. 12:11–23; 1976.

    Google Scholar 

  25. Oshita, M.; Takeda, H.; Kamiyama, Y., et al. A direct method for the estimation of ornithine carbamoyltransferase activity in serum. Clin. Chim. Acta 67:145–152; 1976.

    Article  Google Scholar 

  26. Podah, H. Cellular functions of ascorbic acid. Biochem. Cell Biol. 68:1166–1173; 1990.

    Article  Google Scholar 

  27. Prockop, D. J.; Berg, R. A.; Kivirikko, K. I., et al. Intracellular steps in biosynthesis of collagen. In: Ramachandran, G. N.; Reddi, A. H., eds. Biochemistry of collagen. New York: Plenum Press; 1976:163–273.

    Google Scholar 

  28. Schmidt, E. W.; Schmidt, F. W. Glutamate dehydrogenase. In: Bergmeyer, H. U., ed. Methods of enzymatic analysis. 3rd ed. Basel, Switzerland: Verlag Chemie; 1983:216–227.

    Google Scholar 

  29. Seglen, P. O. Preparation of isolated rat liver cells. In: Prescott, D. M., ed. Methods in cell biology. Vol. 13. New York: Academic Press; 1976:29–83.

    Google Scholar 

  30. Tajima, S.; Pinnel, S. R. Regulation of collagen synthesis by ascorbic acid. Ascorbic acid increases type I procollagen mRNA. Biochem. Biophys. Res. Commun. 106:632–637; 1982.

    Article  PubMed  CAS  Google Scholar 

  31. Takahashi, K.; Hata, J.; Mukai, K., et al. Close similarity between cultured human omental mesoterial cells and endothelial cells in cytochemical markers and plasminogen activator production. In Vitro Cell. Dev. Biol. 27A:542–548; 1991.

    Article  PubMed  CAS  Google Scholar 

  32. Takahashi, K.; Kiguchi, T.; Sawasaki, Y., et al. Lung capillary endothelial cells produce and secrete urokinase-type plaminogen activator. Am. J. Respir. Cell Mol. Biol. 7:90–94; 1992.

    PubMed  CAS  Google Scholar 

  33. Takezawa, T.; Yamazaki, M.; Mori, Y., et al. Morphological and immunocytochemical characterization of a heterospheroid composed of fibroblasts and hepatocytes. J. Cell Sci. 101:495–501; 1992.

    PubMed  CAS  Google Scholar 

  34. Thornton, S. C.; Mueller, S. N.; Levine, E. M. Human endothelial cells: use of heparin in cloning and long-term serial cultivation. Science 222:623–625; 1983.

    Article  PubMed  CAS  Google Scholar 

  35. Tong, J. Z.; De Lagausie, P.; Furlan, V., et al. Long-term culture of adult rat hepatocyte spheroids. Exp. Cell Res. 200:326–332; 1992.

    Article  PubMed  CAS  Google Scholar 

  36. Tsao, M.; Smith, J. D.; Nelson, K. G., et al. A diploid epithelial cell line from normal adult rat liver with phenotypic properties of “oval” cells. Exp. Cell Res. 154:38–52; 1984.

    Article  PubMed  CAS  Google Scholar 

  37. Wachstein, M.; Meisel, M. E. Histochemistry of hepatic phosphatases at a physiologic pH. Am. J. Clin. Pathol. 27:13–23; 1957.

    PubMed  CAS  Google Scholar 

  38. Yamada, N.; Okano, T.; Sakai, H., et al. Thermo-responsive polymeric surface; control of attachment and detachment of culture cells. Makromol. Chem. Rapid Commun. 11:571–576; 1990.

    Article  CAS  Google Scholar 

  39. Yaswen, P.; Hayner, N. T.; Fausto, N. Isolation of oval cells by centrifugal elutriation and comparison with other cell types purified from normal and preneoplastic livers. Cancer Res. 44:324–331; 1984.

    PubMed  CAS  Google Scholar 

  40. Yokota, S.; Mori, M. Immunoelectron microscopical localization of ornithine transcarbamylase in hepatic parenchymal cells of the rat. Histochem. J. 18:451–457; 1986.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karikusa, F., Sawasaki, Y. The restoration of the functions of serially passaged calf hepatocytes by spheroid formation. In Vitro Cell.Dev.Biol.-Animal 32, 30–37 (1996). https://doi.org/10.1007/BF02722991

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02722991

Key words

Navigation