Skip to main content
Log in

Open-loop stabilizability of infinite-dimensional systems

  • Published:
Mathematics of Control, Signals and Systems Aims and scope Submit manuscript

Abstract

In this paper we study open-loop stabilizability, a general notion of stabilizability for linear differential equations\(\dot x\)=Ax+Bu in an infinite-dimensional state space. This notion is sufficiently general to be implied by exact controllability, by optimizability, and by various general definitions of closedloop stabilizability. Here,A is the generator of a strongly continuous semigroup, and we make very few a priori restrictions on the class of controlsu. Our results hinge upon the control operatorB being smoothly left-invertible, which is a very mild restriction when the input space is finite-dimensional. Since open-loop stabilizability is a weak concept, lack of open-loop stability is quites strong. A focus of this paper is to give necessary conditions for open-loop stabilizability, thus identifying classes of systems which are not open-loops stabilizable.

First we give useful frequency domain conditions that are equivalent to our definitions of open-loop stabilizability, and lead to a version of the Hautus test for open-loop stabilizability. When the input space is finite-dimensional, we give necessary conditions for open-loop stabilizability which involve spectral properties ofA. We show that these results are not true if the conditions onB are weakened. We obtain analogous results for discrete-time systems. We show that, for a class of systems without spectrum determined growth, optimizability is impossible. Finally, we show that a system is open-loop stabilizable with a class of controlu if and only if the system with the sameA but a more boundedB is open-loop stabilizable with a larger class of controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Chen, S. G. Krantz, D. W. Ma, C. E. Wayne, and H. H. West; The Euler-Bernoulli beam equation with boundary energy dissipation, inOperator Methods for Optimal Control Problems, S. J. Lee, ed., Marcel Dekker, New York, 1988, pp. 67–96.

    Google Scholar 

  2. R. F. Curtain and H. J. Zwart;An Introduction to Infinite-Dimensional Linear Systems Theory, Texts in Applied Mathematics, vol. 21, Springer-Verlag, New York, 1995.

    MATH  Google Scholar 

  3. R. Datko; A linear control problem in an abstract Hilbert space,J. Differential Equations 9 (1971), 346–359.

    Article  MATH  MathSciNet  Google Scholar 

  4. H. O. Fattorini;The Cauchy Problem, Encyclopedia of Mathematics and Its Applications, vol. 18, Addison-Wesley, London, 1983.

    Google Scholar 

  5. F. Flandoli, I. Lasiecka, and R. Triggiani; Algebraic Riccati equations with nonsmoothing observation arising in hyperbolic and Euler-Bernoulli boundary control problems.Ann. Mat. Pura Appl.,153 (1988), 307–382.

    Article  MATH  MathSciNet  Google Scholar 

  6. G. Greiner, J. Voigt, and M. Wolff; On the spectral bound of the generator of semigroups of positive operators.J. Operator Theory,5 (1981), 245–256.

    MATH  MathSciNet  Google Scholar 

  7. M. L. J. Hautus; (A, B)-invariant and stabilizability subspaces, a frequency domain description,Automatica,16 (1980), 703–707.

    Article  MATH  MathSciNet  Google Scholar 

  8. F. Huang; Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces,Ann. Differential Equations,1 (1985), 43–55.

    MATH  MathSciNet  Google Scholar 

  9. W. Krabs, G. Leugering, and T. Seidman; On boundary controllability of a vibrating plate,Appl. Math. Optim.,13 (1985), 205–229.

    Article  MATH  MathSciNet  Google Scholar 

  10. E. Kreyszig,Introductory Functional Analysis with Applications, Wileys, New York, 1978.

    MATH  Google Scholar 

  11. I. Lasiecka and R. Triggiani; Dirichlet boundary stabilization of the wave equation with damping feedback of finite range.J. Math. Anal. Appl.,97 (1983), 112–130.

    Article  MathSciNet  Google Scholar 

  12. K. Morris; Justification of input/output methods for systems with unbounded control and observation, Preprint.

  13. R. Rebarber; Necessary conditions for exponential stabilizability of distributed parameter systems with infinite-dimensional unbounded feedback.Systems Control Lett. 14 (1990), 241–248.

    Article  MATH  MathSciNet  Google Scholar 

  14. R. Rebarber; Semigroup generation and stabilization byA σ-bounded feedback perturbations,Systems Control Lett.,14 (1990), 333–340.

    Article  MATH  MathSciNet  Google Scholar 

  15. R. Rebarber; Conditions for the equivalence of internal and external stability for distributed parameter system,IEEE Trans. Automat. Control 38 (1983), 994–998.

    Article  MathSciNet  Google Scholar 

  16. R. Rebarber and H. J. Zwart; Open loop stabilization of unitary groups,Proceedings of the Second European Control Conference, Groningen, June 28 to July 1, 1993, pp. 1100–1104.

  17. O. J. Staffans, Coprime factorizations and well-posed linear systems,SIAM J. Control Optim., to appear.

  18. H. Triebel,Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.

    Google Scholar 

  19. R. Triggiani; Lack of exact controllability for wave and plate equations with finitely many boundary controls,Differential Integral Equations,4 (1991) 683–705.

    MATH  MathSciNet  Google Scholar 

  20. G. Weiss; Admissibility of unbounded control operators with finitely many boundary controls,Differential Integral Equations,4 (1991), 683–705.

    MathSciNet  Google Scholar 

  21. G. Weiss; Admissibility of unbounded control operators.SIAM J. Control Optim.,27 (1989), 527–545.

    Article  MATH  MathSciNet  Google Scholar 

  22. J. Zabczyk; Remarks on the control of discrete-time distributed parameter systems,SIAM J. Control Optim. 12 (1974), 721–735.

    Article  MATH  MathSciNet  Google Scholar 

  23. J. Zabczyk; A note onC 0-semigroups,Bull. Acad. Polon. Sci. Sér. Math.,23 (1975), 895–898.

    MATH  MathSciNet  Google Scholar 

  24. H. J. Zwart; Some remarks on open and closed loop stabilizability for infinite-dimensional systems, in F. Kappel, K. Kunisch, and W. Schappacher (eds.),Control and Estimation of Distributed Parameter Systems, International Series of Numerical Mathematics, vol. 91, Birkhäuser-Verlag, Basel, 1989, pp. 425–434.

    Google Scholar 

  25. H. J. Zwart; Open loop stabilizability, a research note,Proceedings of the Fifth Symposium on Control of Distributed Parameter Systems, 26–29 June 1989, Perpignan, pp. 585–589.

  26. H. J. Zwart; Open loop stabilizability of the undamped wave equation,Proceedings of the First European Control Conference, Grenoble, July 2–5, 1990, pp. 2064–2066, 1991.

  27. H. Zwart; A note on applications of interpolation theory to control problems of infinite-dimensional systems,Appl. Math. Comput. Sci.,6 (1996), 5–14.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Rebarber.

Additional information

This work was partially supported by NSF Grant DMS-9623392.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rebarber, R., Zwart, H. Open-loop stabilizability of infinite-dimensional systems. Math. Control Signal Systems 11, 129–160 (1998). https://doi.org/10.1007/BF02741888

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02741888

Key words

Navigation